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Preface

The symposium “Artificial Economics 2006” is the second in a planned line of
symposia on artificial economics, following a symposium held in Lille, France
in 2005, organized by Phillipe Mathieu, Bruno Beaufils and Olivier Bran-
douy [1]. The organizing theme of these symposia, is the computational study
of economies perceived as complex dynamic systems.

With the latter being a non-existing phenomenon, the defining distinction
is not between artificial and natural economics, but rather between aiming to
understand economic processes by constructively simulating them, as opposed
to reductionistically analyzing economic systems. With this distinction the
game is set, and doors are open for new understandings of economic systems.

Artificial economics is a methodological approach rather than a paradig-
matic approach. Neoclassicals, Keynesians, Marxists etc. may all benefit from
the methods of artificial economics. Surely some New Classicals have felt the
straight jacket of eg. having to assume homogeneous or representative agents,
and certainly many Keynesians have dreamt of unifying microeconomics and
macroeconomics without totally giving up on their macromodel. Artificial eco-
nomics provide a toolbox fit for turning towards such fundamental problems
anew, without adopting a predetermined idea of what the answers are going
to be.

What artificial economics does embrace is an encouragement to economics
and economic subdisciplines, to take off the blinkers, and learn about other dis-
ciplines. Artificial economics encompasses implementation of ideas and mod-
eltypes from other sciences into economics, integration of different economic
submodels, as well as the export of economic conceptions to other sciences.
The three invited speakers of Artificial Economics 2006, Akira Nametame,
Thomas Lux and Kumaraswamy “Vela” Velupillai, together with a number
of contributors, all prove that much may be gained by moving between disci-
plines.
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Akira Nametame, from the Department of Computer Science, National
Defense Academy, Yokosuka, Japan, has moved between the fields of physics,
computer science and economics - or more generally, social sciences. With
applied physics and operations research as his original fields, Nametame has
in recent years commuted between economics and computer science, managing
to enrich both fields with his interdisciplinary insights. In his speak, printed
as Chapter 11 in this volume, Nametame will discuss the formation of social
norms by means of interaction (network effects).

Thomas Lux, Department of Economics, University of Kiel, Germany,
started his career in macroeconomics, but has made important contributions
to finance by introducing new tools adapted from other sciences to the field.
Among other contributions, he was one of the first to apply statistical mechan-
ics to financial markets [3]. Following up on this theme, Lux has combined
behavioural finance, agent-based computational economics and econophysics
in order to explain the stylized facts of financial returns (eg. fat tails and
volatility). In his speak Thomas Lux will discuss estimation of agent-based
models.

Kumaraswamy “Vela” Velupillai, National University of Ireland, Gal-
way, Ireland and Trento University, Italy, moves elegantly between several
economic subdisciplines with macroeconomics as his home base, and a well-
founded knowledge of mathematics, computability theory, philosophy etc. He
is the founder of “Computable Economics” [2], i.e. a discipline in which re-
sults and theoretical tools stemming from classical recursion theory are applied
to study fundamental economic problems with special reference to the com-
putability, constructivity and complexity of economic decisions, institutions
and environments. K. Velupillai has proven himself as a strong methodological
watch dog - watching over both the analytical and the artificial approaches
to economics, and this is also the position he shall take in his speak.

The Artificial Economics conferences are two-day symposia - a form that
served its purpose well in Lille 2005 by generating interesting discussions
between subfields - discussions that would not have arisen, had each subfield
gone to different parallel sessions. The drawback is the limited number of
papers that this form leaves room for. Again this year, space only permitted
half of the submitted extended abstracts to be accepted. The difficult selection
process was based on a double-blind reviewing process, where each paper was
send to three referees. A thanks to all submitters of extended abstracts -
without you there could be no symposium.

The Scientific Committee of Artificial Economics 2006 did a great job in
reviewing submitted papers and broadcasting news about the Symposium.
Thank You!
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Laboratoire d’Économétrie de l’École
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Part I

Market Structure and Economic Behaviour



1

Heterogeneous Beliefs Under Different Market
Architectures

Mikhail Anufriev1 and Valentyn Panchenko2

1 CeNDEF, University of Amsterdam, Amsterdam m.anufriev@uva.nl
2 CeNDEF, University of Amsterdam, Amsterdam v.panchenko@uva.nl

Summary. The paper analyzes the dynamics in a model with heterogeneous agents
trading in simple markets under different trading protocols. Starting with the an-
alytically tractable model of [4], we build a simulation platform with the aim to
investigate the impact of the trading rules on the agents’ ecology and aggregate
time series properties. The key behavioral feature of the model is the presence of a
finite set of simple beliefs which agents choose each time step according to a fitness
measure. The price is determined endogenously and our focus is on the role of the
structural assumption about the market architecture. Analyzing dynamics under
such different trading protocols as the Walrasian auction, the batch auction and the
’order-book’ mechanism, we find that the resulting time series are similar to those
originating from the noisy version of the model [4]. We distinguish the randomness
caused by a finite number of agents and the randomness induced by an order-based
mechanisms and analyze their impact on the model dynamics.

1.1 Introduction

The paper contributes to the analysis of the interplay between behavioral
ecologies of markets with heterogeneous traders and institutional market set-
tings. The investigation is motivated by the aim to explain inside a relatively
simple and comprehensible model those numerous “stylized facts” that are
left unexplained in the limits of the classical financial market paradigm (see
e.g. [3]). Since the dynamics of financial market is an outcome of a compli-
cated interrelation between behavioral patterns and underlying structure, it
seems reasonable to start with an analytically tractable model based on re-
alistic behavioral assumptions and to simulate it in a more realistic market
setting. Such a strategy is chosen in this paper.

The first generation of agent-based models of financial markets followed
the so-called bottom-up approach. The models were populated by an “ocean”
of boundedly rational traders with adaptive behavior and were designed to
be simulated on the computers. The Santa Fe artificial market (AM) model
[1, 9] represents one of the best known examples of such approach. See also
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[10] and reviews in [7] and [8]. The inherent difficulty to interpret the results
of simulations in a systematic way led many researchers to build the models
with heterogeneous agents which can be rigorously analyzed by the tools of
the theory of dynamical systems. The achievements of the latter approach
are summarized in [6]. In particular, the evolutionary model of Brock and
Hommes (henceforth BH model) introduced in [4] follows the ideas of the
Santa Fe AM in that the traders repeatedly choose among a finite number of
predictors of the future price according to their past performance.

All the models mentioned so far (both simulational and analytic) are based
on a simple framework with the mythical Walrasian auctioneer clearing the
market. Real markets are functioning in a completely different way, and many
recent models try to capture this fact. For instance, in [11] it is shown that an
artificial market with a realistic architecture, namely an order-driven market
under electronic book protocol, is capable of generating satisfactory statistical
properties of price series (e.g. leptokurtosis of the returns distribution) in the
presence of homogeneous agents. Similarly, the agent-based simulations in [2]
demonstrate that the architecture bears a central influence on the statistical
properties of returns. The latter contribution is also focused on the interrela-
tion between market architecture and behavioral ecology, and in this respect is
closely related to our paper. We relax, however, the assumption of a “frozen”
population made in [2], and allow the agents to update their behavior over
time.

More specifically, we assume that before the trading round, each agent
can choose one of two simple predictors for the next price. The individual de-
mand function depends on the predictor chosen, while the price is fixed later
according to the specific market mechanism. The choice of predictor is imple-
mented as a random draw with binary choice probabilities depending on the
relative past performances of two predictors. An important parameter of the
model is the intensity of choice, which measures the sensitivity of the choice
probability to the relative performance. The higher the intensity of choice,
the higher the probability that the best performing predictor is chosen. We
simulate and compare the market populated by such heterogeneous agents
under three aggregating mechanisms: Walrasian auction, batch auction, and
an “order-book” mechanism. The latter two cases are interesting, since they
resemble two protocols implemented in real stock exchanges. On the other
hand, simulation of the Walrasian scenario provides a well-understood bench-
mark. Indeed, when the number of agents tends to infinity, our stochastic
model converges to the deterministic BH model, thoroughly analyzed in [4].

In this paper, we show that understanding the basic mechanisms of the
BH model can be very helpful also when dealing with more realistic market
architecture. Indeed, the qualitative aspects of the non-linear dynamics gen-
erated by the BH model turn out to be surprisingly robust with respect to
the choice of the market mechanism. Nevertheless, there are some important
effects which realistic mechanisms supplement to the model. First, the finite-
ness of the number of agents provides a stabilizing effect on the model, since
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it implies a bigger noise in the choice of the predictor, which is equivalent to
a smaller intensity of choice. Second, the inherent randomness of the markets
under order-driven protocols (when agents have to choose one or few points
from their demand curves) add destabilizing noise, which can be amplified,
when the fundamental equilibrium is unstable. As a result, the generated
time series remind the noisy version of the BH dynamics, when the system is
switching between different attractors. This result is now produced, however,
without adding either exogenous (e.g. due to the dividend realizations), or
dynamic noise to the model. Third, we investigate the impact of two types
of orders, market and limit orders, on the dynamics. We introduce a new pa-
rameter, the agents’ propensity to submit market orders, which determines
agent’s preferences in submitting market orders as opposite to limit orders. We
show that when this propensity high, the dynamics under the batch auction
greatly deviate from the underlying fundamental, while the dynamics of the
order-driven market converges to the dynamics under the Walrasian scenario.
We also show some descriptive statistics for return time series generated for
different values of the intensity of choice and the propensity to submit market
orders.

The rest of the paper is organized as follows. In the next section we present
the deterministic BH model, focusing on the agents’ behavior, which is mod-
eled in a similar way in our simulations. We also briefly discuss the properties
of the dynamics for different values of the intensity of choice. In Section 1.3,
we explain the three market mechanisms and introduce the difference between
market and limit orders. Simulations results are presented and discussed in
Section 16.5. Section 19.5 points to possible directions for future research.

1.2 The Brock-Hommes Benchmark Model

Let us consider a market where two assets are traded in discrete time. The
riskless asset is perfectly elastically supplied at gross return R = 1 + rf . At
the beginning of each trading period t, the risky asset pays a random dividend
yt which is an independent identically distributed (i.i.d.) variable with mean
ȳ. The price at period t is determined through a market-clearing condition
(Walrasian scenario) and denoted by pt. In the case of zero total supply of
the risky asset, the fundamental price, which we denote by pf , is given by
the discounted sum of the expected future dividends ȳ/rf . This is also the
solution to the market-clearing equation for the case of homogeneous rational
expectations.

In modeling the agents’ behavior we closely follow the BH approach taken
in [4]. Traders are mean-variance optimizers with absolute risk aversion a.
Their demand for the risky asset reads

Di,t(pt) =
Ei,t−1[pt+1 + yt+1] − (1 + rf ) pt

a Vi,t−1[pt+1 + yt+1]
, (1.1)
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where Ei,t−1[pt+1 + yt+1] and Vi,t−1[pt+1 + yt+1] denote the expectations of
trader i about, respectively, the mean and variance of price cum dividend at
time t+1 conditional upon the information available at the end of time t− 1.
It is assumed that all the agents expect the same conditional variance σ2 at
any moment t, and that there are different predictors for the mean. Thus, the
agents in the model have heterogeneous expectations.

We concentrate here on one of a few cases analyzed in [4] and assume that
two predictors are available in the market, fundamental and trend-chasing.
These two predictors capture, in a very stylized way, two different attitudes
observed in real markets. The fundamental predictor forecasts the fundamen-
tal value pf = ȳ/rf for the next period price, so that

E1
t [pt+1 + yt+1] = pf + ȳ .

According to the trend-chasing predictor, the deviations from the fundamental
price pf can be persistent, i.e.

E2
t [pt+1 + yt+1] = (1 − g) pf + g pt−1 + ȳ ,

for some positive g.
In the BH model the population of agents is continually evolving. Namely,

at the beginning of time t, agents choose one predictor among the two, accord-
ing to their relative success, which in turn depends on the performance mea-
sure of predictors. The fraction nh

t of the agents who use predictor h ∈ {1, 2}
is determined on the basis of the average profit πh

t−1 obtained by the traders
of type h between periods t− 2 and t− 1. Since under the Walrasian market-
clearing, all agents with a given predictor have the same profit, the average
profit of a type in the BH model can be simply referred as the profit of a given
type.

As soon as the profit πh
t−1 is determined, the performance measure Uh

t−1

of strategy h can be computed. Agents have to pay a positive cost C per time
unit to get an access to the fundamental strategy, and U1

t−1 = π1
t−1−C, while

the trend-chasing strategy is available for free, and hence, U2
t−1 = π2

t−1. In our
simulation model, we, in addition, apply a transformation to this performance
measure to make it scale-free: Ũh

t−1 = Uh
t−1/(|U1

t−1| + |U2
t−1|). Finally, the

fraction nh
t is given by the discrete choice model, so that

nh
t = exp[βŨh

t−1]/Zt−1 , where Zt−1 =
∑

h
exp[βŨh

t−1] . (1.2)

The key parameter β measures the intensity of choice, i.e. how accurately
agents switch between different prediction types. If the intensity of choice is
infinite, the traders always switch to the hystorically most successful strat-
egy. On the opposite extreme, β = 0, agents are equally distributed between
different types independent of the past performance.

Let us briefly discuss the dependence of the price dynamics on the inten-
sity of choice in the BH model. For details the reader is refereed to [4], where
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Fig. 1.1. Time-series properties of the Brock-Hommes model. Left Panel: Bifur-
cation diagram with respect to intensity of choice β. For each β ∈ (2, 6), 500 points
after 1000 transitory periods are shown for two different initial conditions: one below
fundamental price and one above. The parameters are C = 1, g = 1.2, rf = 0.1 and
ȳ = 10. Right Panel: Typical time series for intensity of choice after the secondary
bifurcation, in this case for β = 4. See text for explanation.

the deterministic skeleton with constant dividend is analyzed. From the bi-
furcation diagram shown in the left panel of Fig. 1.1, it can be seen that the
fundamental equilibrium, where the price is equal to pf , is stable for small
values of β. For β = β∗ ≈ 2.35, a primary pitchfork bifurcation occurs, where
the fundamental equilibrium loses stability. Two additional stable equilibria
appear, one above and one below the fundamental and the original equilib-
rium becomes unstable. (Notice that for each β we show the prices for two
initial conditions, belonging to the basins of attraction of two different equilib-
ria.) A secondary Neimark-Sacker bifurcation takes place for β = β∗∗ ≈ 2.78.
A stable quasiperiodic cycle emerges immediately afterward. With higher β
the amplitude of this cycle increases, so that it almost touches the unstable
fundamental equilibrium. For β = ∞ the system is close to a homoclinic bi-
furcation, which explains the typical time series for high β, reproduced in the
right panel of Fig. 1.1.

If the initial price p0 > pf , then the price will grow (shown by solid thin
line), further diverging from the unstable fundamental equilibrium. The trend
following behavior, which is dominating due to its zero costs, is responsible for
this market bubble. The forecasted error of trend-followers increases over time,
however, since the actual price grows faster than expected. When the error
becomes too high, it offsets the positive cost C of fundamental predictor. From
this moment agents prefer to switch to fundamental behavior, contributing to
a crash. From (1.2) it can be seen that, due to finite β, some small fraction
of chartists remains in the market. This fact keeps the price a bit above the
fundamental value and new bubble starts. A similar pattern with negative
bubbles can be observed for initial price p0 < pf (shown by the thin dotted
line in the right panel of Fig. 1.1). Finally, if a small amount of dynamical
noise is added, the positive and negative bubbles coexist on the trajectory
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(shown by the thick solid line). The observed behavior is qualitatively the
same for all relatively high β, only the amplitude of the quasi-periodic cycle
increases with β, as can be seen from the bifurcation diagram.

It is important to stress that the time series described above are obtained
under the assumption of a constant dividend. Thus, the BH model is able to
explain the excess volatility as an endogenous outcome of the agents’ interac-
tions. A more sophisticated model built in a similar spirit in [5] concentrates
on the explanation of other stylized facts. The authors reproduce volatility
clustering and realistic autocorrelation, kurtosis and skewness of the return
distribution. Since the main goal of this paper is an investigation of the im-
pacts of the market mechanisms on the model, but not the reproduction of the
stylized facts, we will limit our analysis in the next sections to the simplest
possible BH model.

1.3 Different Market Designs

On the basis of the analytic BH model, we construct an agent-based model
and investigate its behavior under different trading protocols. In the agent-
based model, the fraction nh

t is interpreted as a probability of agent i to be
of type h. The Walrasian auction is set as a benchmark, since the standard
argument of the Law of Large Numbers implies that its outcome is equivalent
to the original BH model as the number of agents tends to infinity. We will
compare this setting with two more realistic order-driven markets, i.e. the
batch auction and order book. Thought the paper we consider continuous
prices.

1.3.1 Walrasian Auction

Under the Walrasian auction, at time t each agent i submits his excess de-
mand function ΔDi,t(p), which is the difference between his demand Di,t

defined in (1.1) and his current position in the risky asset. The price pt is
determined from the market clearing condition

∑
i ΔDi,t(pt) = 0. Notice that

the equilibrium price pt is always unique for the considered demand functions.

1.3.2 Batch Auction

Under the batch auction mechanism, each agent submits one or more orders,
instead of the whole demand function. There are two types of the orders:
limit and market order. A limit order consists of a price/quantity combination
(p, q). Similarly to [2], an agent determines the price of a limit order as p =
p∗ ± ε|pt−1 − p∗|, where p∗ is the solution to the agent’s “no-rebalancing
condition” ΔDi,t(p

∗) = 0, ε is a random variable, uniformly distributed on
[0, 1], and “+” corresponds to sell order and “−” to buy order. The quantity
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of the limit order at price p is given by q = ΔDi,t(p). A market order specifies
only the desired quantity of shares. As in [2], the type of order is determined
by a propensity to submit a market order m ∈ [0, 1], which is exogenously
given parameter. A limit order (p, q) becomes a market order (·, q), if ε < m
in the limit order price equation. The price pt is determined as an intersection
of demand and supply schedules build on the basis of submitted orders (see
[2] for details). Market buy/sell orders are priced at the min/max price among
the corresponding side limit orders, which guaranties their fulfillment.

1.3.3 Order Book

In the order-book market, a period of time does not correspond to a single
trade any longer. Instead, there is one trading session over period t and price
pt is the closing price of the session. Each agent can place only one buy or sell
order during the session. The sequence in which agents place their orders is
determined randomly.

During the session the market operates according to the following mecha-
nism. There is an electronic book containing unsatisfied agents’ buy and sell
orders placed during current trading session. When a new buy or sell order
arrives to the market, it is checked against the counter-side of the book. The
order is partially or completely executed if it finds a match, i.e. a counter-side
order at requested or better price, starting from the best available price. An
unsatisfied order or its part is placed in the book. At the end of the session
all unsatisfied orders are removed from the book.

As in the batch auction setting, there are two types of the orders: limit and
market orders. The mechanisms for determining type of the order, its price
and quantity are equivalent to those described in Section 1.3.2. The quantity
of the market order is determined from the excess demand on the basis of the
last transaction price.

1.4 Simulation Results

In Fig. 1.2, 1.3 and 1.4 we present the outcomes of typical simulations for dif-
ferent market architectures, different values of intensity of choice parameter β
and different propensity to market orders. Ignoring transitory 1000 points, we
show in each panel 4 time series, corresponding to the equilibrium price in the
deterministic BH model (solid thick line), the equilibrium price in the simu-
lated agent-based model under Walrasian (solid thin line) and batch (dashed
line) auctions, and, finally, the closed price under order-book protocol (dotted
line). Apart from the first two simulations, all the results are reported for 500
agents present in the market. For each β we compare the case m = 0.1, when
nearly all orders are limit orders, with m = 0.8, when the majority of the or-
ders are of market type. Finally, we consider five following values of intensity
of choice. First, β = 2.5, which lies between two bifurcation values β∗ and
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Fig. 1.2. Price time series under different market mechanisms (see the legends) for
different number of agents and different propensity to submit market orders m (see
the titles). Intensity of choice β = 2.5.

β∗∗ (see Fig. 1.2). Then, β = 2.75 and β = 2.8, i.e. immediately before and
after the secondary bifurcation (see Fig. 1.3). And finally, β = 3 and β = 5,
i.e. far above β∗∗, when the quasi-periodic dynamics discussed at the end of
Section 19.2 has already emerged (see Fig. 1.4).

For β = 2.5 the fundamental equilibrium is unstable, and the stable equi-
librium of the BH model lies above pf = 100, at the level p∗ ≈ 101.3. When the
number of agents is small (as in the upper panels of Fig. 1.2), the discrepancy

between the theoretical fraction of fundamentalists, nf
t , computed according

to (1.2) and the realized fraction is relatively large. Such discrepancy can
be thought of as the agents’ mistake in the computation of the performance
measure. Therefore, it corresponds to a smaller “effective” intensity of choice
with respect to β = 2.5. It explains why the relatively stable time series of
Walrasian scenario lies well below the BH benchmark, close to pf = 100: this
is simply stable steady-state for some smaller value of β. When the number
of agents increases, the error between the theoretical and realized fraction of
fundamentalists decreases and the Walrasian scenario is getting closer to the
BH benchmark (see the lower panels of Fig. 1.2).

The higher level of noise, which is intrinsic to the order-driven markets,
has similar stabilizing consequences for the remaining two market mechanisms.
This can be clearly seen in the lower left panel of Fig. 1.2, where price for both
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Fig. 1.3. Price time series under different market mechanisms (see the legends) for
500 agents, different intensities of choice and different propensity to submit market
orders m (see the titles).

batch and order-book markets fluctuates around equilibrium, which is stable
only for some smaller value of β. This stabilizing “β-effect” takes place also for
other parametrizations, but usually cannot be seen, since other destabilizing
effects dominate.

For example, in the right panels of Fig. 1.2, one can clearly see that an
increase of the propensity to submit market orders m has strong destabiliz-
ing effect on the batch auction. It is interesting that the same increase of m
has rather stabilizing consequences for the order-book mechanism and shifts
the price towards the benchmark fundamental value (cf. 1.2, the two lower
panels). This should not, however, come as a surprise, given the difference
between these two mechanisms. Indeed, under the order-book, the executed
prices of the market orders always come from some limit orders. Thus, the
realized prices are still mainly determined by the limit orders, while increas-
ing the randomness from the higher propensity to submit market orders m,
probably leads to the stabilizing “β-effect” which we discussed above. On the
other hand, under the batch protocol with many market orders, the price be-
comes very dependent on the relative sizes of buy and sell market orders and,
therefore, its realization becomes more random by itself.

The two upper panels of Fig. 1.3 reveal another effect, implied by two
types of randomness, i.e. one due to the errors between the theoretical and
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Fig. 1.4. Price time series under different market mechanisms (see the legends) for
500 agents, different intensities of choice and different propensity to submit market
orders m (see the titles).

the realized fraction of traders, and one inherent in order-driven markets.
Here, the BH model still generates stable dynamics converging to p∗ ≈ 102.
The dynamics under the Walrasian auction and the order-book are unstable,
however. The reason for this is a very small size of the basin of attractor p∗.
The small endogenous noise constantly drives the dynamics out of this attrac-
tor, even if it ultimately comes back due to the instability of the fundamental
fixed point. In addition, we again observe that “β-effect” has strong stabilizing
effect for the batch auction with small propensity to submit market orders,
m = 0.1. If the propensity is high, m = 0.8, the batch auction again leads
to a very unstable behavior with large fluctuations and, sometimes, outliers.
Similar characteristic can be given to the case β = 2.8, which is shown on the
lower panels of Fig. 1.3.

Finally, Fig. 1.4 gives examples for relatively high values of β, when the
stabilizing “β-effect” does not play a role, since the secondary bifurcation has
already occurred under all market mechanisms. The main inference is that
the analytical BH model based on the Walrasian auction is able to replicate
the dynamics under more sophisticated trading mechanisms quite well. In
particular, the time series in the two lower panels resemble the one obtained
in the right panel of Fig. 1.1, when the dynamical noise triggers the dynamics
between the two coexisting quasi-periodic attractors.
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Table 1.1. Deceptive statistics of the return series generated under various market
settings.

Auction Walrasian Batch Order-Book Walrasian Batch Order-Book
m = 0.1 m = 0.8

β = 2.50
mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
variance 0.0002 0.0005 0.0003 0.0002 0.0033 0.0004
skewness −0.178 −0.040 −0.468 −0.178 −7.760 −0.033
kurtosis 0.357 0.046 1.153 0.357 123.384 0.631

β = 2.75
mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
variance 0.0007 0.0005 0.0012 0.0007 0.0027 0.0024
skewness −12.693 −0.063 −0.410 −12.693 0.941 2.241
kurtosis 191.460 0.040 97.315 191.460 19.251 181.319

β = 2.80
mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
variance 0.0009 0.0005 0.0017 0.0009 0.0026 0.0019
skewness −12.766 0.129 −9.356 −12.766 −2.141 13.710
kurtosis 185.355 0.073 118.671 185.355 22.256 407.478

β = 3.00
mean 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000
variance 0.0014 0.0010 0.0021 0.0014 0.0269 0.0034
skewness −13.151 −12.891 −10.871 −13.151 −10.757 −0.471
kurtosis 183.716 234.023 138.080 183.716 243.943 103.755

β = 5.00
mean 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001
variance 0.0059 0.0054 0.0091 0.0059 0.0030 0.0133
skewness −10.602 −7.965 −4.988 −10.602 0.199 1.265
kurtosis 115.248 66.308 47.613 115.248 13.820 43.380

Table 1.1 shows descriptive statistics of the return series for various β and
m under different market auctions. In most cases the values of the skewness
and kurtosis are far from realistic (e.g. S&P series returns statistics reported
in [5]). Nevertheless, for β = 5 and m = 0.8 the values of the statistics for the
batch and order-book auctions become closer to the realistic values.

1.5 Conclusion

The analytically tractable BH model introduced in [4] is quite successful in
reproducing a number of stylized facts. Indeed, when the intensity of choice
in this model is high, the price time series may deviate from fundamental
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benchmark in a systematic way, become quasi-periodic or even chaotic, and
exhibit excess volatility. The phenomenon of volatility clustering can also be
reproduced in a similar framework, as discussed e.g. in [5]. However, the un-
realistic market clearing scenario, where each agent has to supplement an
infinite amount of information to an (in)famous Walrasian auctioneer, has
always cast a shadow on such an explanation of the stylized facts.

The results of this paper suggest that the order-based model is able to
replicate the main features of the evolutionary BH model. Moreover, we found
that the finiteness of the number of agents provides stabilizing effect, which
is equivalent to a lower intensity of choice β in the deterministic model. The
randomness resulting from the batch auction and the order-book mechanism
destabilizes the model. This effect is mainly observed when the basins of at-
traction of the steady state (cycle) are small, i.e. in the vicinity of a bifurcation.

While investigating the effects of the limit- and market order, we found
that the presence of the large number of market orders may substantially
destabilize the dynamics of the batch auction. Instead, under the book-order
mechanism, this effect is not observed.

The analysis of the descriptive statistics of the return series for different
parameters and under different market protocols suggests that the structural
assumptions are able to explain only some stylized facts, e.g. excess kurtosis.
The model did not generate volatility clustering under any protocol, which
suggest that this phenomenon should be modeled using the appropriate be-
havioral assumptions.

This result brings us to the directions for the future research. It would
be interesting to start with a more realistic model (e.g. the model [5]), which
is able to reproduce volatility clustering, and investigate its dynamics under
various market mechanisms. Moreover, we could adopt different mechanisms
for the limit order price generation, which are closer to those observed on the
real markets. On the behavioral level, we could distinguished some parameters
(e.g. β) between agents within one group and introduce a memory parameter
into the individual type selection procedure.
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2.1 Introduction

An important criterion for the evaluation of an exchange market is its ability
to achieve allocative efficiency. The seminal paper by Gode and Sunder (1993)
shows that the protocol known as continuous double auction can attain the ef-
ficient allocation even if the traders exhibit “zero-intelligence”: hence, market
protocols may actively contribute to the discovery of an efficient allocation.
This paper spawned a variety of computer simulations that “enabled us to
discover that allocative efficiency [...] is largely independent of variations in
individual behavior” at least in canonical environments; see Sunder (2004).

However, the attainment of allocative efficiency is only a necessary condi-
tion for the effectiveness of a market protocol in an exchange economy. For
instance, consider the fictitious protocol of Walrasian tâtonnement, where a
centralized market maker iteratively elicit traders’ excess demand functions
and adjust prices before trade takes actually place. Under standard condi-
tions, this protocol attains allocative efficiency while simultaneously mini-
mizing both the volume of transactions and price dispersion. Moreover, the
efficient allocation is reached in one giant step, so that its speed of convergence
(after trade begins) is instantaneous.

Clearly, the Walrasian mechanism is only an idealization. Realistic market
protocols require far less information from traders and should not be expected
to perform as smoothly. This raises the question of ranking the effectiveness of
those different market protocols which are commonly used in real markets; see
Audet et al (2002) or Satterthwaite and Williams (2002). Assuming that they
all pass the test of achieving an efficient allocation, which additional criteria
should enter in their comparison? Walrasian tâtonnement suggests at least
three possibilities: excess volume, time to convergence, and price dispersion.

A major complication in the study of alternative protocols is that their
outcome is profoundly affected by traders’ behavior; see Brewer et al (2002).
This may exhibit sophisticated strategies, behavioral biases, access to different
forecasting abilities, and a variety of factors which we encompass under the
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term of traders’ intelligence. Gode and Sunder (1993) introduced the notion of
“zero intelligence” as an extreme assumption, under which all complications
in traders’ behavior are ruled out and traders are only requested to satisfy a
natural budget constraint. They argued that the outcome of a market protocol
under zero intelligence is a test of its intrinsic ability to perform effectively.

Assuming zero intelligence, LiCalzi and Pellizzari (2005) compares the per-
formance of different market protocols with regard to allocative efficiency and
other criteria such as excess volume or price dispersion. The main protocols
examined are: the batch auction, the continuous double auction, a (nondis-
cretionary) specialist dealership, and a hybrid of these last two. All the four
protocols exhibit a remarkable ability to achieve allocative efficiency under
three variants of zero intelligence, confirming the main insight from Gode and
Sunder (1993).

However, even under zero intelligence, stark differences in performance
emerge over other relevant dimensions. The continuous double auction has
the worst performance with respect to excess volume, time to convergence,
and price dispersion. The dealership has a lower time to convergence and
never performs worse than the batch auction. These differences are sometimes
dramatic and sometimes small (but persistent). Hence, LiCalzi and Pelllizzari
(2005) concludes that (under zero intelligence) there is a clear partial ranking
of these protocols with respect to excess volume, time to convergence, and
price dispersion. A dealership performs slightly better than a batch auction or
a hybrid market, and both are substantially more effective than a continuous
double auction.

The relevance of this conclusion for the evaluation of practical market pro-
tocols is severely limited by the assumption of zero intelligence, which rules
out the impact of differences in traders’ behavior. The question addressed
in this paper is how much of this conclusion remains true if we remove zero
intelligence. Using two simple rules for intelligent trading, we study the per-
formance ranking for the four market protocols with regard to excess volume,
time to convergence, and price dispersion.

The organization of the paper is the following. Section 2.2 describes the
model used in our simulations. Section 2.3 details the experimental design.
Section 2.4 reports on the results obtained and Section 2.5 offers our conclu-
sions. For an expanded and more robust analysis, see LiCalzi and Pellizzari
(2006).

2.2 The Model

We use the same setup as in LiCalzi and Pellizzari (2005), where a simple
exchange economy admits a unique efficient allocation. Given that the mar-
ket protocols attain allocative efficiency, this implies convergence to the same
allocation and facilitates comparisons. Following Smith (1982), we identify
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three distinct components for our (simulated) exchange markets. The envi-
ronment in Section 2.2.1 describes the general characteristics of the economy,
including agents’ preferences and endowments. The market protocols in Sec-
tion 2.2.2 provide the institutional details which regulate the functioning of
an exchange. The behavioral assumptions in Section 2.2.3 specify how agents
make decisions and take actions.

2.2.1 The Environment

We consider an economy with n traders. There is cash and one good, which
is an asset with a (random) realization value Y at a given time T in the far
future. Each trader i has an initial endowment of cash ci ≥ 0 and shares si ≥ 0.
We rule out any informational effect and assume that all traders believe that
Y is normally distributed with mean μ ≥ 0 and precision τ = 1/σ2 > 0 and
that no new information is ever released. Therefore, traders’ beliefs about Y
are homogeneous and never change until uncertainty resolves.

Each trader i has CARA preferences over his final wealth, with a coefficient
of risk tolerance ki > 0. Therefore, trader i’s excess demand function for the
asset (net of his endowment si) is the linear function

qi(p) = kiτ(μ − p) − si. (2.1)

Let K =
∑

i ki be the sum of traders’ coefficients of risk tolerance. The
unique efficient risk-sharing allocation for this economy requires that trader i
holds s∗i = (S/K)ki asset shares; that is, it is proportional to the coefficient
of risk tolerance. The competitive equilibrium achieves the efficient allocation
at the price p∗ = μ−S/(τK). At such price, the trader i’s net demand qi(p

∗)
is exactly filled, making his final allocation qi(p

∗) + si equal to the required
s∗i = (S/K)ki.

2.2.2 The Market Protocols

We compare the performances of four market protocols: a batch auction, a
continuous double auction, and a nondiscretionary dealership, and a hybrid
of these last two. The first protocol is simultaneous, while the other three are
sequential. The following features are common to all protocols.

A protocol is organized in trading sessions (or days). Agents participate
in every trading session, but each of them can exchange at most one share
per session. If the protocol is sequential, the order in which agents place
their orders is randomly chosen for each trading session. If the protocol is
simultaneous, all order are made known and processed simultaneously so the
time of their submission is irrelevant. In every trading session, each agent
selects on which side of the market he attempts to place a trade: he can
switch roles across trading sessions, but he cannot place simultaneous orders
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for buying and selling within the same session. The books are completely
cleared at the end of each trading session.

Prices are quoted using a minimum tick; in other words, they are dis-
cretized. Moreover, prices must be nonnegative: if a trader places a bid lower
than zero, this is ignored; if a trader places an ask lower than zero, this is
automatically converted to the lowest strictly positive price compatible with
the existing tick.

The specific market protocols studied in this paper are the following.

Batch auction. In each trading session, after traders submit their orders,
the exchange price p∗ is obtained at the intersection of demand and supply.
If there are multiple solutions, we choose p∗ as the midpoint of the interval
between the lowest and the highest possible values. (If there are no solutions,
no exchange takes place.) Shares and corresponding payments are exchanged
between traders who submitted bids not lower than p∗ and asks not higher
than p∗. Traders who placed orders exactly at price p∗ may be accordingly
rationed. This protocol is also known as the k-double auction, with k = 1/2.

Continuous double auction. In each trading session, traders place their
orders on the selling and buying books. Their orders are immediately executed
if they are marketable; otherwise, they are recorded on the books with the
usual price-time priority. Orders are canceled only when a matching order
arrives or the trading day is over.

Nondiscretionary dealership. There is a specialist dealer who posts bid
and ask quotes valid only for a unit transaction. Agents check sequentially
the dealer’s quotes for the side of the transaction they are attempting. If
an agent accepts the dealer’s quote, the exchange takes place at the quoted
price. Right after a transaction is completed, the two dealer’s quotes for bid
and ask increase (or decrease) by one tick if the agent completed a purchase
(or a sale). The size of the bid-ask spread stays fixed over time, so the price
is never unique. Limited to this protocol, therefore, convergence of prices to
a given value p∗ should be interpreted as convergence to within a bid-ask
interval that contains p∗.

Hybrid market. This combines the continuous double auction with the deal-
ership. Distinct selling and buying books hold quotes from the specialist dealer
and from the public, respectively. The dealer posts bids and asks valid only
for a unit transaction and revises her quotes as in the nondiscretionary deal-
ership; in particular, she moves her quotes only after transactions in which
she has been involved. Agents check sequentially the books for the side of the
transaction they are attempting. Their orders are immediately executed at
the best price available (which may be different from the specialist’s) if they
are marketable; otherwise, they are recorded on the traders’ book with the
usual price-time priority. Agents’ orders are canceled only when a matching
order arrives or the trading day is over. Hence, once deposited on the traders’
book, an order from an agent cannot be executed with the dealer.
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2.2.3 Behavioral Assumptions

A major obstacle in the study of microeconomic systems is that their perfor-
mance is jointly determined by the interactions of traders’ behavior within the
market protocol. As traders may react differently to different market proto-
cols, it is difficult to separate the intrinsic characteristics of a market protocol
from the properties induced by the traders’ strategies. Our approach is to
concentrate on the institutional characteristics of the protocols, by making
general-purpose assumptions on traders’ behavior. These assumptions hold
for all the simulations reported in this paper.

First, traders are restricted to trade one unit at a time. This restriction on
traded quantities simplifies the strategy space and allows direct comparisons
with existing theoretical results. Second, buying orders are constrained by
the available cash and selling orders by the available endowment of the asset;
that is, budget constraints hold. This is consistent with a value-based strategy
(“buy low, sell high”), which is a seemingly natural requirement of rationality
for traders’ behaviors.

Third, since the demand function (2.1) of each trader is strictly decreasing,
traders have decreasing marginal utility for additional units. If the current
endowment of a trader is si, his valuation for the next unit to trade is

p(±1) = μ − si ± 1

kiτ
, (2.2)

where the ± sign depends on whether the attempted trade is a purchase or
a sale. Clearly, this implies that the reservation price of each trader depends
on the side of the transaction he is entering and on his current endowment si;
moreover, his (implicit) bid-ask spread is 2/(kiτ).

Given his valuation, in each stage a trader must decide which side of the
transaction he wants to attempt and what price to offer. These two separate
decisions may exhibit various degrees of intelligence. LiCalzi and Pellizzari
(2005) models zero intelligence as follows. At the start of a trading session,
each trader chooses either side with equal probability. This randomized choice
is stochastically independent of previous history, endowment, or any other
parameter of the model. Hence, a trader ignores that the current market price
is an imperfect signal for whether he should seek to buy or sell. After the
trader has chosen his side of the transaction, suppose that he is going to
attempt a purchase. Then his valuation for the next unit to buy is p(+1)
from Equation (2.2). Under zero intelligence, this (potential) buyer bids a
price uniformly drawn from the interval [p(+2), p(+1)]. Similarly, a (potential)
seller asks a price uniformly drawn from the interval [p(−1), p(−2)]. Again,
the information associated with the current market price is ignored.

There are numerous possibilities to make traders “intelligent”, ranging
from the simple to the highly sophisticated. We attempt to capture the essence
of intelligent trading by making two distinct assumptions that exploit the
imperfect signal associated with the current price. One is concerned with the
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choice of which transaction to attempt, and the other with the price that is
offered or asked.

Suppose that the current market price3 is p. An intelligent trader decides
the side of his next (potential) transaction by comparing p with his current
valuations p(+1) and p(−1). If p(+1) > p, the market price is lower than the
price at which the trader would like to buy one more unit, so he attempts a
purchase. If p(−1) < p, the market price is higher than the price at which
the trader would like to sell one more unit, so he attempts a sale. If p(−1) ≤
p ≤ p(+1), the probability that he attempts a purchase is proportional to the
distance of p from p(+1). Formally, we assume that with probability

P (sale) =

⎧⎨
⎩

0 if p(−1) < p
p−p(+1)

p(−1)−p(+1) if p(−1) ≤ p ≤ p(+1)

1 if p(+1) > p

the trader attempts a sale and otherwise goes for a purchase. For later use,
we nickname this assumption S1 as a mnemonic for “side”. The former zero
intelligence assumption with P (sale) = 1/2 is denoted S0. (The subscripts “1”
and “0” denote the presence or absence of intelligence.)

Next, consider the choice of the price. Suppose that the trader is attempt-
ing a purchase. Under zero intelligence, he would post a bid uniformly drawn
from the interval [p(+2), p(+1)]. We model intelligent trading by assuming
that he compares the current market price p and his demand function to find
the interval [p(n + 1), p(n)] which contains p and then posts a bid uniformly
drawn from [p(n + 1), p(1)]. Compared to zero intelligence, this trader selects
his bid from a larger and more aggressive interval. There is a nice intuition
for this rule: at a price p in [p(n + 1), p(n)], the trader would like to buy n
units. However, as we constrain him to buy one unit a time, he can at best
try to buy the next unit at a price no greater than p(n + 1). The symmetric
version holds when the trader is attempting a sale. We nickname this rule P1

as a mnemonic for “price”; P0 denotes the rule under zero intelligence.

2.3 Experimental Design

2.3.1 Identification

A simulation run for our model requires the specification of five global para-
meters, a list of individual variables for each trader, as well as specific assump-
tions about market protocol and traders’ behavior. The global parameters are
the number n of traders, the mean μ and the variance σ2 of the realization
value Y of the asset, the number t of trading sessions, and the size Δ of

3 For a batch auction, we use the price observed in the last active trading session.
For the sequential protocols, we use the midpoint of the (best available) bid-ask
spread.
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the tick. Individually, a trader i is characterized by his coefficient ki of risk
tolerance and by his endowment of cash ci and asset shares si. Finally, for
protocols involving the dealer, we need to select her initial quotes.

The market protocols are described in Section 2.2.2. For ease of refer-
ence, we nickname the protocols as B (batch auction), C (continuous double
auction), D (automated dealership), and H (hybrid market). Recall that the
behavioral assumptions described in Section 2.2.3 are nicknamed Si and Pk

for i, k = 0, 1.
We have run simulations for all 4 × 4 × 3 = 48 possible combinations

of protocols, behavioral assumptions and performance criteria, over different
instantiations of the parameters. The results reported in Section 2.4 are robust
both to variations in the fine details in the market protocols and substantial
changes in the parameters, provided that the overall liquidity of the system is
sufficiently large. To simplify the presentation, we fix the exemplar parametric
configuration reported in Table 2.1 and for each performance criterion we
report the simulations for the four market protocols and the four behavioral
assumptions. The initial dealer’s quotes are a bid of 745 and an ask of 751,
with a fixed bid-ask spread of 6. The competitive equilibrium price is p∗ =
μ − 2σ2 = 760 in all the simulations reported in this paper.

Table 2.1. Exemplar for identification.

Parameters Initialization
Global n = 1, 000

μ = 1, 000
σ2 = 120
t = 2,500
Δ = 1

Trader ki = divisors of σ2 in {10, . . . , 40}
ci = 50, 000
si = permutation of 2ki

We say that a market protocol exactly implements a trading rule if it is
never necessary to round traders’ offers to match the ticked prices; see LiCalzi
and Pellizzari (2005). An exact implementation allows exact convergence to
the equilibrium price supporting the efficient allocation. (This is not relevant
for the dealership protocol, because the fixed bid-ask spread prevents the price
from being unique.) Our exemplar case is chosen to ensure that all the simula-
tions reported in this paper satisfy the requirement of exact implementation.
To this purpose, we choose integer values for μ and σ2 and initialize each ki’s
with a stochastically independent draw from a uniform distribution over the
divisors of σ2. We also assume that the support of the uniform distribution
over bids and asks is formed by the integers in the two intervals.
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2.3.2 The Simulations

A round of testing requires to simulate 3×4 = 12 combinations of performance
criteria and behavioral assumptions. A typical round of simulations runs as
follows. For each of the 12 combinations, we instantiate parameters according
to the exemplar in Table 2.1 and work out a simulation batch consisting of
100 runs under different initial random seeds. Then we record the time series
for prices, volume, and endowments, and compute relevant statistics for the
performance criteria. The simulations have been run using a dedicated package
of routines written in Pascal.

2.4 Results

We separately evaluate the performance of the four market protocols with
respect to three criteria: excess volume, time to convergence, and price dis-
persion. Each one is defined and discussed in one of the following three sub-
sections.

2.4.1 Excess Volume

Getting from the initial endowment to the efficient allocation requires a mini-
mum number of (unit) transactions. The traded volume is the total number of
unit transactions completed before attaining the efficient allocation. The Wal-
rasian protocol attains the efficient allocation in one step and thus minimizes
the traded volume. Realistic market protocols usually waste transactions and
thus require higher volumes. We measure the excess volume in a market pro-
tocol as the percentage of traded volume in excess of the minimum required
to attain the efficient allocation. Clearly, higher excess volumes signal less
effective protocols that let unnecessary trades take place.4

Figure 2.1 shows four boxes. Each box is associated with a different as-
sumption about the intelligence of the traders, as noted at its bottom. For
instance, the top-right box is associated with S1P0: this corresponds to pos-
itive intelligence in the choice of the side and zero intelligence in the price
decision. Within each box, we graph the excess volumes for 100 runs for each
of the four protocols, as well as marking the average level. The dots are color-
coded: black is Batch (B), red is Continuous Double Auction (C), green is
Dealership (D), and Blue is the Hybrid (H) protocol. The market protocols
perform quite differently and these differences persist under various forms of
trading intelligence.

Figure 2.2 merges the dots from the four boxes of Figure 2.1 in a single
box. Two main findings emerge. First, the batch auction and the dealership

4 When a dealer mediates the transfer of one unit from a trader to another one, we
record only one transaction so that the statistics for excess volume are directly
comparable.
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Fig. 2.1. Excess volume — datapoints.

have a substantially lower excess volume than the other two protocols under
any of our variants of intelligent trading; regardless of these, the former two
never exhibit more than 4% excess volume, while the latter two never go below
40%. Second, increasing trading intelligence tends to reduce excess volume,
most notably in the continuous double auction, but does not eradicate the
differences.

We fit a linear model to the data using a robust regression based on an M
estimator; see Venables and Ripley (2002). The independent dummy variables
are B, C, D, and H for the protocols, and P, S for trading intelligence over
price and side. Dummies for protocols are increasingly ordered by the size of
their effect: here, we leave out D because it has the lowest marginal impact.
With t-values reported below each coefficient, the estimated equation for the
excess volume is

ExcVol = 0.0566 + 0.0065B + 0.7192C + 0.8205H − 0.0252S − 0.0889P
(16.70) (1.673) (183.9) (209.8) (−9.126) (−32.13)
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The intercept, of course, combines the joint effect of D and S0P0 and thus the
baseline is a dealership protocol with zero intelligence trading. It is clear that
the (average) effect of C and H on increasing the excess volume is statistically
significant. Similarly, side and price intelligence decrease the excess volume.

2.4.2 Time to Convergence

Our second performance criterion is the number of trading sessions completed
before no further trading takes place. In our exemplar case, the maximum
number of units between the initial endowment and the final efficient endow-
ment is 60, so this is a lower bound on the number of trading sessions required
to achieve allocative efficiency. Figure 2.3 is similar to Figure 2.2 and reports
the merged datapoints for time to convergence.

The estimated equation for time to convergence is

Time = 183.31 + 16.022H + 156.78C + 208.98B − 149.26S + 7.5212P
(45.99) (3.481) (34.06) (45.40) (−45.86) (2.311)

The (average) effect of H, C and B on increasing the time to convergence is
statistically significant. Remarkably, while side intelligence contributes to this
reduction, the coefficient for price intelligence denotes a (weak) contrary effect
— when trading is aggressive, time to convergence lengthens.

2.4.3 Price Dispersion

Our third and final performance criterion attempts to quantify the dispersion
of prices by measuring the standard deviation of the time series of the prices
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observed at the end of each trading session. Figure 2.4 reports the merged
datapoints for price dispersion.
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The estimated equation for price dispersion is

PDisp = 1.5128 + 1.3868H + 3.0874D + 15.398C + 0.2826S − 0.5027P
(29.61) (23.50) (52.32) (261.0) (6.773) (−12.05)
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The (average) effect of H, D and C on increasing price dispersion is statisti-
cally significant, and particularly sizeable for C. Side intelligence has also an
increasing effect, while price intelligence has a moderating impact.

2.5 Conclusions

The simulations shows that the choice of a protocol may have a substantial
impact on the allocative effectiveness of an exchange market. Since lack of
space prevents us from a longer analysis, we offer only the main conclusions.
A richer and more complete analysis is carried out in LiCalzi and Pellizzari
(2006).

Excess volume. The ranking with respect to excess volume is {B, D} >>
C > H , where > stands for “lower volume” and >> for “much lower volume”.
The notation {B, D} means that the ranking is not statistically significant. In
simple words, the batch auction and the dealership generate minimal excess
volume; on the other hand, protocols involving a continuous double auction
are seriously wasteful. Moreover, intelligent trading helps, in the sense that
increasing the intelligence of traders tends to reduce (but does not eradicate)
the excess volume.

Prescriptively, this suggests that a market regulator attempting to reduce
excess volume in an exchange market would be well advised to opt for a batch
auction or a dealership. Moreover, he should make an effort to educate traders
towards making use of the signals embedded in the market price.

Time to convergence. The ranking with respect to time to convergence is
D > H >> C > B, where > stands for “lower time” and >> for “much lower
time”. Protocols involving a dealer converge much faster. Intelligent trading
is overall beneficial but has an ambiguous effect. A better choice for the side
of the transaction to attempt substantially reduces the time to convergence:
this alone might wipe out differences among all protocols except for the batch
auction. On the other hand, more aggressive behavior on the choice of the
prices slightly increases this time.

Prescriptively, this suggests that a market regulator attempting to reduce
the time to convergence in an exchange market should consider having a
dealership (possibly along an open book). Moreover, he should point out to
traders the importance of using the price signal to understand the direction in
which trade should be oriented, while attempting to reduce their greediness.

Price dispersion. The ranking with respect to price dispersion is B > H >
D >> C, where > stands for “lower dispersion” and >> for “much lower
dispersion”. The batch auction minimizes price dispersion and the continuous
double auction yields by far the worst performance in this respect. Intelligent
trading is overall damaging but with an ambiguous effect. More intelligence
on choice of the side of the transaction increases the dispersion, while a more
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aggressive pricing behavior has a mild moderating effect. Prescriptively, this
suggests that a market regulator attempting to reduce price dispersion in an
exchange market should avoid the use of a continuous double auction.
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Summary. We analyze with a bottom-up approach the competition between arti-
ficial intelligent agents in Continuous Double Auction markets in terms of allocative
efficiency, price convergence and emergence or not of Nash equilibriums. In previ-
ous works agents have a fixed bidding strategy during the auction, usually under
symmetric environments. In our simulations we allow the soft-agents to learn not
only about how much they should bid or offer, but also about possible switching
between the alternative strategies. We examine the behaviour of strategic traders
under general supply and demand schedules (asymmetric environments) thus ex-
tending previous results.

The results clarify the limitations and the scope of Gode and Sunder conjec-
ture and related recent works, and show the emergence of Hayeks and A. Smith
endogenous order. Institutions matter and so does intelligence as far as the rate of
convergence and agents surplus is concerned. These results are of importance in the
design and performance of auctions in the real world and in the applications of auc-
tion theory to many problems in management and production, far beyond market
design (market oriented programming).

3.1 Beyond Experimental Economics: a Research Agenda
in Management Engineering (Scope and Related Work)

Following Vernon Smith [12] and other experimental economists, there are
three dimensions that are essential in the design of any market experiment
(figure 3.1): the institution (I) (it is both the exchange rules and the way
the contracts are closed, and the information network), the environment (E)
(agent endowments and values, resources, knowledge) and the agent behaviour
(A).

By mapping different arrangements of the elements of this triplet (IxExA)
into observed and forecasted outcomes, a host of experimental results can be
obtained. For the last 30 years experimental economists have been doing just
that and they have gained an accepted reputation when auction theory has
to face practice. In the FCC auction design, for example, successful tests were
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Fig. 3.1. Dimensions in the design of any market

conducted by Charles Plott in his laboratory at Caltech and help convince
the FCC to adopt the theoretical proposals of Milgrom-Wilson design. Exper-
imental Economics is now the companion of mechanistic design when defining
auction institutions in practice.

But if we want to control the agent behaviour (A) dimension of our experi-
ments, we have to move from human to artificial agents as argued in López and
Hernández [8]. Taking this step, a reach program of research comes up, just
widen-ing the many relevant findings of experimental economics with human
agents, and checking their robustness against alternative controlled agents’
behaviour.

The first experiment with programmed agents (beyond experimental eco-
nomics) by Gode and Sunder [5] was a big surprise. They confirmed that
institutions matter. To the extreme that in a CDA price convergence and al-
locative efficiency was achieved, even with zero intelligent (poorly instructed
but perceptive) agents. Spontaneous order arises in the CDA thus confirming
Hayek and A. Smith conjectures.

Since Gode and Sunder [5] several studies have examined CDA with var-
ious com-puterized bidding agents. Cliff and Bruten [2] designed the ”zero
intelligence plus” (ZIP) agents to demonstrate that institutions matters and
so does intelligence. They employed an elementary form of machine learn-
ing to explore the minimum degree of agent intelligence required to reach
market equilibrium in a simple version of the CDA. Preist and van Tol [10]
used different heuristics for determining target profit margins in ZIP agents
to faster achieve market equilibrium. Gjerstad and Dickhaut [4] proposed an
agent (GD) who places the bid or offer that maximizes the expected surplus
(calculated as the product of the gain and the probability for the bid or offer
to be accepted). Das et al. [3] made improvements on the GD agents and de-
scribed a series of laboratory experiments that, for the first time, allow human
subjects to interact with two types of software bidding agents (ZIP and GD).
They found that agents consistently obtain significantly larger gains from
trade than their human counterparts. Grossklags and Schmidt [6] found that
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the information on the existence of software agents in the market environment
results in more efficient behaviour of human traders.

We focus on the interactions between software bidding strategies. In this
sense, Tesauro and Das [14] tested agent performance in homogeneous pop-
ulations and in two heterogeneous settings: (1) a single agent of one type
competes against an otherwise homogeneous populations of a different type;
(2) two types of agents compete in a market where one has a counterpart of
the other type.

A typical approach to evaluate strategies in heterogeneous populations has
been to establish a tournament, like the Santa Fe Double Auction (Rust et al.
[11]) or the Trading Agent Competition (TAC) (Wellman et al. [16]). Walsh
et al. [15] said that the tournament-play is one trajectory through the space
of possible interactions and the question of which strategy is the best is often
not the most appropriate given that a mix of strategies may constitute an
equilibrium. They proposed a method for analyzing the interaction among
heterogeneous heuristic strategies. They used the replicator dynamics formal-
ism to model the evolution in the strategy space basing in a created heuristic
payoff table.

Our work differs from prior CDA studies on the interactions between bid-
ding strategies (Tesauro and Das [14], Walsh et al. [15]) in three ways. (1)
These works assume fixed strategies for an agent over time. We allow the soft-
agents to learn switching between three alternative strategies. (2) We examine
the behaviour of strategic traders under general supply and demand schedules
(asymmetric environments) not only under symmetric environments. (3) Our
approach is Agent Computational Economics and the mix of strategies equi-
librium emerges from the bottom-up versus the top-down approach of Walsh
et al. [15].

Since auction design is a question of scarcity and wants, we may give
back to Agent Theory and Artificial Intelligence a nice heritance from the
experimental economics evidence: treat management engineering problems as
auctions (market oriented programming, Boutilier et al. [1]). At INSISOC
(www.insisoc.org) we are doing research in some fundamental areas in pro-
duction and management with this new focus.

3.2 Intelligent Agents in the CDA Market. The Model

We describe our model in terms of the essential dimensions of any market
experiment (IxExA).

3.2.1 The Institution

The institution is a Continuous Double Auction (CDA). The CDA imposes
no restrictions on the sequencing of messages. Any trader can send a message
at any time during the trading period. We consider a CDA with a bid-offer
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spread reduction. The new bid/offer has to provide better terms than previous
outstanding bids/offers.

3.2.2 The Environment

Each trader is either a seller or a buyer. The assumption of fixed roles conforms
to extensive prior studies of the CDA, including experiments involving human
subjects and automated bidding agents. Each agent is endowed with a finite
number of units. Seller i has ni units to trade and he has a vector of marginal
costs (MaCi1, MaCi2, . . . , MaCini

) for the corresponding units. Here MaCi1

is the marginal cost to seller I of the first unit, MaCi2 is the cost of the second
unit, and so on. Buyer j has nj units to trade and he has a vector of reserve
prices (RPj1, RPj2, . . . , RPjmj

) for the corresponding units. Here RPj1 is the
reserve price to seller I of the first unit, RPj2 is the reserve price of the second
unit, and so on. These valuations are private.

Our model does not have environmental restrictions and it allows us to
simulate any environment in terms of the number of traders, their units and
the valuations of each trader. So we can simulate competitive as well as mar-
ket power environments, both with symmetric or asymmetric supply and de-
mand curves. We consider that an environment is symmetric if the supply
and demand curves have opposite signs but equal magnitudes. Otherwise, we
consider that the environment is asymmetric.

3.2.3 Agents’ Behaviour

In CDA markets traders face three non-trivial decisions: How much should
they bid or offer? When should they place a bid or an offer? And when should
they accept an outstanding order? Each agent type: ZIP, GD and K (defined
below) corresponds to particular values for these decisions.

Each ZI-Plus agent (Cliff and Bruten [2]) has a mark up μ that determines
the price at which he is willing to buy or sell in adaptative way. The agents
learn to modify the profit margin over the auction using the information about
the last market activity. For example, the profit margin of a buyer is

μ = 1 − howMuchBidt−1 + Δt

ReservePrice
, (3.1)

where Δt is calculated using the individual trader’s learning rate (β), the
momentum learning coefficient (γ) and the difference between the target bid
and the bid in the last round.

The GD agent is a more sophisticated one (Gjerstad and Dickhaut [4]).
Each seller chooses the bid that maximizes his expected surplus, defined as the
product of the gain from trade and the probability for an offer to be accepted.
GD agents modify this probability using the history HM of the recent market
activity (the bids and offers leading to the last M traders: ABL accepted bid



3 Strategic Behaviour in Continuous Double Auction 35

less than b, AL accepted bid and offer less than b, RBG rejected bid greater
than b, etc.) to calculate a belief function. Interpolation is used for prices
at which no orders or traders are registered in HM. For example, the belief
function of a buyer is:

q̂(b) =
ABL(b) + AL(b)

ABL(b) + AL(b) + RBG(b)
. (3.2)

The Kaplan (K) agent is the third type agent we consider. It was the
winner in the tournament of Santa Fe Institute in 1993 (Rust et al. [11]). The
basic idea behind the Kaplan strategy is: ”wait in the background and let
others negotiate. When an order is interesting, accept it”. K agents must be
parasitic on the intelligent agents to trade and to obtain profit. If all traders
in the market are K agents no trade will take place.

In our model, we consider one more decision: Which strategy should they
choose to obtain higher profit? Each agent chooses a strategy from a set
of three alternatives (GD, K and ZIP). To take this decision each trader
only knows their own reservation prices and the information generated in the
market, but he doesn’t know the bidding strategy of the other agents or the
profit achieved by them.

Each agent learns to change his strategy looking for the best bidding strat-
egy in the following way: An agent will consider to change his strategy if the
profit is less than the profit from the previous period. The agent will actually
change his strategy if he believes that he could have reached higher profit
following an alternative strategy.

In table 3.1 we show how a buyer forms his beliefs. The buyer compares if
the bid of an alternative strategy (BA) could have been lower or greater than
the realized bids or accepted offers under the current strategy. Following this
comparison, he may conclude:

• If BA is lower than the realized bid and greater than the minimum trans-
action price for that period, a buyer will consider that the BA would have
been accepted and he could have obtained greater profits. But if it is lower
than the minimum transaction price, a buyer will assume that no seller
would have accepted the BA.

• If BA is greater than the realized bid, a buyer could have obtained lower
profits.

Table 3.1. Buyers beliefs

Realized bids Accepted offers

Lower Greater profits No profit
(if it is greater than the minimum transaction price)

No profit
(if it is lower than the minimum transaction price)

Greater Lower profits The same profits
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• If BA is lower than the accepted offer, a buyer would have rejected the
offer and he could have obtained no profit.

• If BA is greater than the accepted offer, a buyer could have obtained the
same profits whatever the value of the bid was.

Following this strategy choice decision, the resulting population will have a
particular proportion of the three types of software bidding agents (ZIP, GD
and K). To have a graphical idea of the dynamics of this proportion, we will
represent the strategy space by a two dimensional simplex grid with vertices
corresponding to the pure strategies (all ZIP, all GD or all K). We draw three
regions to represent the populations that have a dominant strategy when more
than 33% of the agents use the strategy.

3.3 The Experiments

Twenty agents (10 buyers and 10 sellers) compete in the market. For a game
with 20 agents, each one with 3 strategies (ZIP, GD and K), there will be 231
possible populations. For each one of these possible populations, 30 simula-
tions are run. Each agent is given a list of ten limit prices (valuations). To
isolate the effects of behaviour under symmetric or asymmetric environments
and to prevent some agents having relative initial advantage, the agents’ valu-
ations are the same for all the agents that are in the same side of the market.

The simulations can be represented in six scenarios, that accommodate
three different environments and two kinds of agent strategies (fixed strategies
and changes on strategies. See table 3.2).

Table 3.2. Simulated environments. E1F stands for symmetric environment and
fixed strategy, E2C for perfectly elastic supply and changes in the strategies, and so
on

ENVIRONMENTS

Strategy NO (fixed) E1F E2F E3F
behaviour YES (change) E1C E2C E3C

The scenarios of fixed strategies (E1F, E2F and E3F) allow us to evaluate
the effects of the changes in the environment. For a given environment we can
check the gain of learning to choose the strategy.
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3.4 Some Results and Discussion

3.4.1 Fixed Learning Strategies During the CDA

Price Behaviour in Homogeneous Populations

We first compare the agent performance in homogeneous populations under
different environments. These elemental experiments are a starting point and
give us an idea of the convergence patterns of each type of software bidding
agents (ZIP, GD and K). Table 3.3 presents the time series of transaction
prices over three periods (100 rounds per period).

If all traders in the market are K agents, no trade will take place. In the
other cases (all ZIP or all GD) the transaction prices converge to the compet-
itive equilibrium price from above (below) when the supply (demand) is more
elastic than demand (supply). Comparing the first column with the second
one, we observe that GD agents take less time than ZIP agents both to learn
and to exchange under any environment. In homogeneous GD populations the
transaction are made in the first rounds of each period and the prices are very
close to the competitive equilibrium price.

Table 3.3. Transaction prices in homogeneous populations

GD population ZIP population K population

No trade

No trade

No trade

Price Behaviour in Heterogeneous Populations Where More than
50% are K agents

In these cases the convergence to competitive equilibrium is not achieved (see
table 3.4). K agents extract surplus from the other side of the market. Con-
sequently the transaction prices move towards the other side of the market.
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Table 3.4. Transaction prices and profits: 50% K agents and 50 % GD agents

Buyers: K (light) Buyers: GD (dark)
Sellers: GD (dark) Sellers: K (light)

E1F

E2F

E3F

Under symmetric environments (E1F), if all buyers are K agents the trans-
actions prices are in the sellers side. While if all sellers are K agents the trans-
action price are in the buyers side. This effect is bigger under asymmetric
environments.

If supply is perfectly elastic (E2F) and all sellers are K agents, their profit
should theoretically be cero because their valuations are equal to the compet-
itive equilibrium price. But this does not happen. As in the symmetric case
above, they steal all the buyers surplus. Accordingly the profits achieved by
the K agents (light bars) are greater than the profits of GD agents (dark bar).
The same results hold for K agents against ZIP agents. No matter in which
side of the market they are or what is the elasticity of their side.
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Market Efficiency

Market efficiency is achieved in almost all the space of possible interactions.
Only in heterogeneous population where more than 50% are K agents, the
efficiency goes down. This confirms previous results for symmetric environ-
ment (Posada et al. [9]). But under asymmetric environments we get higher
volatility.

3.4.2 Changing the Strategy During the CDA

Market Efficiency

Market efficiency is always achieved when the agent learns how to change his
strategy. This happens for any initial proportion of the types of agents and
for any kind of environment.

Price Behaviour

Convergence to the competitive price is achieved after some previous learning
under any initial population and any kind of environment (see Table 3.5).

Strategy Space Evolution

The profit bar charts of table 3.5 indicate that, the following patterns emerge.
GD agents settle in the more elastic side of the market. The Kaplan agents
can free ride only in the case that they all are in one side of the market and
no change of strategies is allowed. This is further confirmed in the simplex
strategy space grid (see table 3.6).

In symmetric environments(EIC) there is an ”attractor” zone, where no
strategy seems to dominate but no clear Nash equilibrium comes up (point
A) If it is asymmetric there is an ”attractor” zone, point B, (8 K, 10 GD, 2
ZIP) no matter which side is the elastic one. In both cases (E2C, E3C) the
GD agents settle in the elastic side.

3.5 Conclusions and Further Research

We have extended in several ways related works following Gode and Sunder
[5] seminal contribution in experimental economics with programmed agents:
beyond experimental economics.

Price dynamics for a CDA is obtained for non symmetric environments and
populations of heterogeneous agent behaviour. We allow the agents to change
their strategies endogenously so that we can trace the patterns of the emerging
proportion of agents’ behaviour not only with symmetric environment as in
Posada et al. [9] but also with asymmetric environments.

For a complete range of the possible settings (ExA), the results confirm
that:
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Table 3.5. Transaction prices and profits when the initial population is 50% are K
agents and 50% GD agents

Buyers: GD Buyers: K
Sellers: K Sellers: GD

E2C

1. The quality of price convergence and allocative efficiency, depend on al-
ternative degrees of agents intelligence.

2. Price dynamics and agents surplus depend on the proportion of the types
of in-telligent agents: Kaplan Zero intelligent, G.D.

3. It also matters whether the environment is symmetric or not. Nevertheless
convergence is achieved if we allow the agents to change their strategy.
There is not Nash equilibriums in the strategy proportions, but under
asymmetric environments the GD strategy becomes dominant.

These results clarify the scope and limitations of A. Smith and Hayek’s
observations on emerging market order for a wide range of variations of (ExA)
in the con-text of a particular but important Institution (I), the Continuous
Double Auction. Institutions matter and so does intelligence as far as the rate
of convergence and agents surplus is concerned.

The approach can be easily extended, in the same vein, to study the equiva-
lence of alternative Institutions for fixed (ExA) settings. One can easily extend
the approach to include speculation agents used to trade in B2B where de-
mand and sup-ply fluctuate from period to period (Li and Smith [7]). A more
complex issue will be to consider a multi-product auction and the possibility
of agents trading in both sides of the markets at the same time.

These results are of importance in the design and functioning of auctions
in the real world and in the applications of auction theory to many problems
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Table 3.6. Strategy space evolution

E1C

E2C

E3C

in management and production far beyond market design (market oriented
programming).
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4.1 Introduction

The Efficient Market Hypothesis (EMH) is one of the most investigated ques-
tions in Finance. Nevertheless, it is still a puzzle, despite the enormous amount
of research it has provoked. For instance, many recent results have shadowed
the well-established belief that market cannot be outperformed in the long
run (Detry and Gregoire [2]).

One other reason is that persistent market anomalies cannot be easily ex-
plained in this theoretical framework Shiller [11]. Additionally, one can also
consider that some talented hedge-fund managers (like Jim Simons) keep earn-
ing excess risk-adjusted rates of returns since years. Nevertheless, there is no
consensus on this last point today Malkiel [7].

Many versions of the EMH have been proposed since the founding works
of Samuelson [10]. We concentrate in this paper on the weak form of efficiency
Fama [3]: “past informations are useless to predict future price changes”. We,
therefore, focus on the efficacity of simple technical trading rules, following
Jensen and Benington [6] or more recently Brock et al. [1]. An extensive survey
for this issue is proposed in Park and Irwin [8].

Nevertheless, we depart from previous works in many ways: we first have
a large population of technical, virtual agents (more than 260.000) exploiting
real-world data to manage a financial portfolio as chartists or technical traders
would do. Very few researches have used such a large amount of calculus to
examine the EMH. Our experimental design allows for agents selection based
on past absolute performance, as well as consistency of performance. We take
into account the data-snooping risk, which is an unavoidable problem in such
broad-spectrum researches, using a rigorous Bootstrap Reality Check (BRC)
procedure [12].

∗ This work has received a grant from European Community – FEDER – and
“Region Nord-Pas de Calais” – CPER TAC –.
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While market inefficiencies, after including transaction costs, cannot clearly
be successfully exploited, our experiments present troubling outcomes like
persistent (but not statistically significant at commonly admitted levels) over
performance, inviting close re-consideration of the weak-form EMH.

This research is organized as follows: section 4.2 presents our multi-agent
system (MAS) and experimental design, section 4.3 is dedicated to our results
and section 4.4 concludes this research.

4.2 Methodology

The methodological section gives the main features of our experimental design,
including the global MAS architecture, descriptions of the agents, and the
statistical procedure aimed at detecting potential market inefficiencies.

4.2.1 MAS Architecture

In this experiment, agents represent virtual investors trading a single financial
commodity called “a tracker”. As it is generally admitted [13], the agents’
fundamental characteristics in this study are an idiosyncratic decision-making
process, autonomy and reactivity to contextual changes. Our MAS is based
on a three-stage architecture (see figure 4.2); at each stage, one can consider
a particular kind of agents with specific aims or logic:

First stage: Strategic Agents are micro-agents always playing the same basic
strategy through the entire simulation. Those basic strategies are known
in the financial community as “technical trading rules”. For instance, a
Strategic Agent:“5-days moving average” cannot process any other oper-
ation and has to decide whether to trade or not on the basis of a single
rule.

Second stage: Family Agents are general agents defining all the formal char-
acteristics used in the instantiation of each Strategic Agent. Each Family
Agent also has to perform a ranking between each of his “children” at
each time step. The Family Agent, thus, has the capacity to select the
most successful individuals among the Strategic Agents. For instance, the
Family Agent “Rectangle” combines four parameters (n, m, p, and s, see
figure 4.1).

Third Stage: Meta Agents are able to mimic the behavior of various Strate-
gic Agents according to the circumstances and the ranking given by the
relevant Family Agent. For instance, a Meta Agent based on the 2-uple
{Momentum, T riangle} will choose and mimic various instances of those
Family Agents, after considering some signals. For instance, it can be-
gin with replicating a Strategic Agent:“5-days momentum” and then keep
on going with this for eight days, then switch to replicate a Strategic
Agent:“3-days triangle” for the next six iterations and so on... We do not
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develop this point in this article, nor do we report results concerning this
category of agents.

To get it clearer, let’s consider one Family Agent: “Periodical Trader”. This
agent buys and sells the trackers at fixed intervals. It is similar to speculators
buying on Mondays and selling on Fridays. This agent has at least two para-
meters coding the dates on which it will buy and sell the trackers. If it decides
to generate all possible Strategic Agents using all possible delays between 1
and 100, 10.000 “children” will be processed. In this study, we have 10 Family
Agents generating more than 260.000 Strategic Agents. One can imagine that
the number of Meta Agents is, therefore, really huge and, despite computer
power or parallel computing facilities, cannot be investigated exhaustively.

4.2.2 Agent’s Design

Agent’s design is specified in terms of the decision making process and oper-
ations allowed in the market.

Agents Population:

As has been presented previously, we have implemented a large population of
heterogeneous agents (267.069 agents, see Table 4.1).

Among these strategic agents, 264.117 (98.89%) are never bankrupted dur-
ing the whole process.

d{k} d{k+n}

d{k+1}

d{k+n+1}

m

n

p      =...%

s

Fig. 4.1. Family Agent “Rectangle”
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Table 4.1. Agents Population

Family Agent Num. Strategic Agents

Periodical {n, m} 250.000
Indicator {n, m, p} 1.470
Rectangle {n, m, p, s} 7290
Triangle {n, m} 1.547
Variation {n, m, p} 2.000
Momentum {n, m} 220
Moving Average {n} 200
Weighted Moving Average {n} 200
RSI {n, p} 4.141
Buy & Hold 1

Total 267.069

Allowed Operations and Behavior:

Each agent is allowed to trade n trackers (n ∈ R+), that is, one financial
commodity replicating exactly one market index (like CAC40, Dow-Jones or
Nikkei). If it has not decided to hold such commodities, the agent holds cash.
Therefore, each agent is in one of these situations:

• it possesses a number of trackers > 0; in this situation we say that the
agent is “in the market”. Its wealth fluctuates along with the market.

• it does not have any tracker or fraction of a tracker, all its wealth been
converted into cash; the agent is “out-of the market” and its wealth is
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Fig. 4.2. Multi-Agent System design
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stable. There is no risk-free asset paying a low interest rate available is
our simulations.

At each time step, agents receive new information and have to decide if it
is worth staying in the market or getting out: they follow systematically the
signals given by their technical rules. For instance, a Strategic Agent designed
as a “moving average 5, 5” analyzes at each iteration if the five days moving
average of past prices has crossed the price process in the top-down direction,
which correspond to a “sell-signal” (resp. bottom-up, “buy-signal”). In this
situation, if the gap between the five days moving average and the price is
greater than 5%, it will “sell” (resp. “buy”). If the gap is under 5%, it will
keep its portfolio unchanged. Each Strategic Agent follows the same kind of
behavior with various charts or technical rules. Nevertheless, one has to no-
tice than one singular agent follows systematically a “Buy & Hold” strategy
(B&H), that is, it enters the market at time = 0 (buys one tracker) and lets
the situation remain unchanged until the end of the simulation. This agent is
our “benchmark” agent in terms of risk and return and stands for a “passive
investor”.

Theoretically, no one can outperform this agent when considering the risk-
adjusted performance in the long run, assuming the EMH holds. In other
words, despite it is obvious than anyone can construct a portfolio or adopt
a strategy that will outperform the B&H strategy, however, this assumes a
higher risk level for the investor and, generally speaking, cannot be qualified
as an outstanding behavior.

Each agent is endowed with the same amount of cash at the beginning of
the simulations. If an agent looses all its endowment during an experiment,
since borrowing is not allowed, it is withdrawn from the market.

In the simulations, agents are considered as “price takers”, that is, their
behavior has no effect on the price of the asset they trade. This is a very
commonly accepted hypothesis in finance, whereas it can be debated in MAS
dealing with artificial stock markets. Trading is subjected to transaction costs
at a 0.5% level.

in−sample selection

out−of sample test

(RWU)

CAC 40

CAC 40

(AWU)

i.i.d Random−Walk

i.i.d Random−Walk

01−1988 : 07−1996

08−1996 : 04−2005

Subperiod 1

Subperiod 2

Real−Worl Universe Artificial−World Universe

Fig. 4.3. Experimental design
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The simulations are based on real daily data from the Euronext Paris
Stock Exchange between 1988 and 2005. The traded tracker perfectly repli-
cates CAC40 index. Agents have access only to past values of this tracker and
the information they receive at each time-step is the price of the tracker cor-
responding to the current iteration (no agent is “cheating” and none behaves
like knowing what the “future” will be).

4.2.3 Organization of the Simulations

Our experimental design is organized in two steps on two “universes” (see
Fig. 4.3):

1. “Universes” are sets of data used to perform the simulations. Simulations
are parallelized over the universes, each of them being useful for under-
standing what happens in the other.
a) Real-World Universe: consists in historical CAC40 observations (see

fig. 4.4), split into two subsamples, RWU1 (01/1988-07/1996) and
RWU2 (08/1996-04/2005).

b) Artificial Universe: consists in computer-generated data using an iid
random-walk process3. This universe is also split into two subsam-
ples AU1 and AU2 and includes the same number of observations as
in RWU1and RWU2. These sets of data are intended to provide a
universe in which it is actually impossible to outperform the market
since it is artificially generated (assuming the random generator is
good enough).

2. Over these universes, the simulations are organized as follows:
a) Step 1, “in-sample selection”: is the selection of the best perform-

ing agents, compared to the benchmark agent. This test consists of
10 simulations based on random subsamples picked in RWU1 and
AU1. These subsamples will be called windows. At the beginning of
each simulation (t = 0), Family Agents create Strategic Agents. Then
Strategic Agents begin to compete against the Buy & Hold Agent.
Then Family Agents rank their respective sub-populations of Strate-
gic Agents, comparing their performances with that of the benchmark
agent. Once the 10 simulations have been processed, Strategic Agents
that have out-performed the benchmark at least in 50% of the simu-
lations are selected.
Performance is always appreciated in terms of risk-return: a Strategic
Agent outperforms the Buy & Hold Agent if and only if it achieves
a more than proportional return considering the risk it has been ex-
posed to during the simulation. “Risk” is calculated as the standard
deviation of the agent’s portfolio, “return” being the average rate of
growth of its wealth.

3 pt = pt−1+εt with εt → N(μ, σ), μ and σ being chosen to fit as closely as possible
the corresponding parameters in RWU1 and RWU2
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b) Step 2, “out-of sample tests”: consists of generalization of the first
stage using the relevant second subsamples (i.e. Strategic Agents hav-
ing out-performed the benchmark at least in 75% of the simulations.

4.2.4 How Do We Decide if a Strategic Agent Outperforms the
B&H Agent?

Three performance indices are calculated providing information on risks and
returns of the Strategic-Agents :

1. Return: ri is the daily return earned by each agent i, for windows t = [1, n],
using the following formula:

ri = [Porti,t=n − Porti,t=1]
1/n (4.1)

In equation 4.1, Porti,t is the agent’s i portfolio on date “t”.
2. Risk: is calculated as the standard deviation of ri,t on each corresponding

window.
3. Synthetic Index: combines the preceding indices and provides an aggre-

gated measure for the absolute performance of one specific Agent i:

SIi = ri/σi (4.2)

One can notice the Synthetic Index reported in equation 4.2 is very similar
to a Sharpe Index.

Fig. 4.4. RWU1 and RWU2 data – level / variations –
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Fig. 4.5. Outperforming Strategic Agents in the Risk-Return Space

This set of indices is systematically evaluated for pairs of agents on each win-
dow. These pairs of agents are always a combination of one Strategic Agent
and the B&H Agent. This procedure allows us to place Strategic Agents in a
risk-return space for subsamples of observations. Assuming we have 10 win-
dows, we thus will have to consider 10 risk-return spaces. In these spaces,
outperforming Strategic Agents are placed in a part of the plan above the line
crossing the origin and reaching one point representing the performance of
the B&H Agent (see Fig. 4.5).

4.2.5 The Data Snooping Issue

Although the process presented in 4.2.3 might appear to be very harsh, it is
clearly not sufficient to “prove”, if at all it is possible, that any persistent,
abnormal over-efficiency of some specific agents really occurs. Since we inves-
tigate the performance of a very large set of agents, we must consider the
data-snooping problem.

To give an illustration of “data-snooping”, let’s consider the following ex-
ample (derivated from Jensen and Cohen [4]): suppose you would like to hire
someone having abilities to predict the next movements in a particular stock
exchange. Obviously, the person to be hired would have to perform this task
better than merely taking chances. To select a good candidate, you propose
the following test: “predict the next 14 fluctuations of the stock exchange in
the following terms: 0 if the market closes up, 1 if it closes down”. In other
words, each candidate would have to propose a 14 characters-long string like
00101110010101. Suppose now you decide to hire someone providing at least
a 75% rate of correct predictions (at least 11 good answers). The probability
for someone to succeed here only by chance is very weak:
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14∑
i=11

Ci
140.514 � 0.02869

In other words, someone without any skill to predict these fluctuations would
roughly have a 97% chance to fail. Suppose now 10 candidates face this chal-
lenge, none of them having any particular ability to predict the stock exchange,
then the probability that “at least one of them would succeed” is sufficiently
large to warrant careful examination of the successful candidate:

1 − (0.9713)10 � 0.2525

Basically, if you increase the number of applicants to a certain point, you will
probably hire someone passing the test4 but nothing proves that this person
has performed better than merely taking chances. This problem, known as
the “data-snooping” bias, has been recognized very early in financial research,
where data-mining has a long tradition [5]5. One way to mitigate this issue
is to apply a procedure called Bootstrap Reality Check (BRC) proposed by
White (2000). In this research, BRC is intended to decide whether or not
the selected agents, at the end of our experimental procedure, have positively
out-performed the benchmark or not, that is, if they have out-performed the
market exploiting weak-form inefficiencies or if this result must be attributed
to chance.

Bootstrap Really Check (BRC) Procedure

BRC consists of testing the following null hypothesis: “H0: the best Strategic
Agent does not outperform the B&H agent.

Let’s note θk one specific performance index for the k-th Strategic-Agent
in a set of M agents,

H0 : max
k=1...M

E(θk) ≤ 0 (4.3)

This performance is calculated over n subsamples (n=200) taken from RWU2

or AU2.
In this research, θk is:

θk = 1/n
n∑

T=1

(SIT,i − SIT,B&H) (4.4)

4 with 100 candidates, the probability than none of them succeed is around 5%
5 “Let us [...] assume that we have access to a large computer and a body of security

price data. Now, if we begin to test various mechanical trading rules with enough
variants, we will eventually find one or more which would have yield profits [...]
superior to a buy and hold policy [...] We cannot be certain that [...] results did
not arise from mere chance”
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In equation 4.4, T is a specific window. In other words, we focus on an average
over performance, appreciated with the Synthetic Al Index (see 4.2.4), over all
the n considered windows for the selected agents. The best agent will therefore
have an estimated performance as follows:

V = max
i=1...M

(
√

M × θi) (4.5)

We then generate B bootstrapped series using a process described by Poli-
tis and Romano [9]. Over those bootstrap series, we estimate again the whole
set of performance indices θi. To distinguish these indices from those coming
from the initial set of data, we note them θb,i (b being the b-th bootstrap
series). The p-value for the Null is therefore:

p =

B∑
b=1

Zb

B
(4.6)

with

Zb =

{
1 if V ∗

b > V
0 else

∣∣∣∣ (4.7)

4.3 Results

The simulations have been conducted over two different universes, as explained
previously (see 4.2.3). Our results are presented successively for each universe.

4.3.1 Do Strategic Agents Behave Well in the Artificial Universe?

By construction, the Artificial Universe does not “hide” any useful information
on date t allowing to predict what will probably happen on date t + 1. Thus,
these data perfectly replicate the behavior of an efficient market index. No
Strategic Agent should be able, in this specific, virtual context to pass the
filters we have programmed. Only chance could explain such an improbable
success. Table 4.2 presents the best agents after each simulation step.

After Step 2, none of the Strategic Agents could be selected with the
required 75% success rate. Table 4.2 shows the number of Strategic Agents
outperforming the B&H agent in at-least 50% of the windows.

This leads us to consider the following explanation for this series of simu-
lations:

• Our simulation process is sufficiently harsh and proves its efficiency in
selecting good candidates: when no structure is hidden in a time series, no
agent can outperform a basic B&H behavior.

• Our Artificial World does not reflect properly the real-world data (mainly
because we have designed it as an i.i.d. process), and more complex dy-
namics in the Artificial World might have given a different result (ARCH
process as example).
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4.3.2 Does RWU Exhibit Inefficiencies?

The whole set of results concerning the two-step selection process exposed in
4.2.3 is reported in Table 4.3.

In-sample Selection: RWU1.

Fig. 4.6. Strategic Agents in the risk-return space for one window of RWU1

Table 4.2. Agents “outperforming” the Artificial Index

Family Agent Num. after Step 1 Num. after Step 2
50% selection rate

Periodical 13368 3
Indicator 13 –
Rectangle 286 2
Triangle 20 –
Variation 28 1
Momentum 13 –
Moving Average 14 –
Weighted Moving Average 3 –
RSI 76 2

Total 13.821 8
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Here, many Strategic Agents (6.057) outperform the benchmark agent in
more than 50% of the cases. Each Family Agent has at least one of its children
selected at the end of this simulation step. The major part comes from the
Periodical Family Agent which is “as expected” but not significant since this
family does not rely on classical technical signals “revealing” a “pattern”. Fig.
4.6 shows, for one window in RWU1, Strategic Agents from various Families
in the risk-return space. The characteristic concave shape of the plot can be
explained by the weigh of transaction costs that penalize the most active
agents.

The selection rate over the initial population is between 0.34% and 11.5%,
which is low, but “as expected”. One has to keep in mind that our procedure
involves a very large number of agents; it is perfectly normal that some of
them seem to perform well at this initial stage. Fig. 4.7 shows the behavior of
some interesting agents in terms of level of portfolio.

Out-of Sample Tests: RWU2 and BRC

After the second selection process, only 19 Strategic Agents have out-performed
the benchmark agent. They come from just two Family Agents : Rectangle
Trader and Variation Trader. Some of them have outperformed the bench-
mark agent in each of the 200 simulations.

Clearly, the proportion of “good candidates” at the end of this out-of-
sample test is very low. This is not surprising since modern stock markets are
obviously not inefficient.

Fig. 4.8 shows the behavior of two very interesting Strategic Agents, vari-
ation 7, 10, 3 and variation 7, 10, 13. The first one obtains a 100% score over
200 random windows in RWU2 while the second one obtains a 76% score.
Lines show the portfolio of these agents and the B&H ’s for the specific win-
dow (01/2003-04/2005).

The next step in the analysis is to verify if this result can provide a kind of
basis to reject the weak-form EMH. Thus, we have applied carefully White’s
Reality Check over 500 bootstrap series to control potential spurious results.
The procedure leads to consider again the whole set of 6.057 Strategic Agents
passing the first selection step.

Although the simulations seem to be very harsh in terms of selectivity for
“good candidates”, we cannot reject the null hypothesis: “The best Strategic
Agents cannot out-perform the Buy & Hold Agent” at ordinary p-values (p-
value=28.2% ). Therefore, we cannot reject the initial weak-form EMH and
cannot report evident market inefficiencies for data with basic Strategic Agents
using simple trading rules. This result seems, therefore, to be a strong support
for the weak-form efficiency of the French Market.
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Fig. 4.8. Portfolios of two Strategic Agents and B&H Agent

4.4 Concluding Remarks

In this research, we show that technical traders cannot outperform a simple
Buy and Hold Agent on Paris Euronext Stock Exchange. This result is derived
from the following observations: our MAS can select some (apparently) very
robust agents, producing very good risk-return scores after a harsh filtering
process.
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Table 4.3. Simulations: Real-World Universe

Stage 1 Stage 2

Family Agent Number % / Initial Number % Remaining
Population Population

Periodical 5.484 2.19% – –
Indicator 5 0.34% – –
Rectangle 367 5.03% 12 3.27%
Triangle 74 4.78% – –
Variation 28 1.40% 7 25%
Momentum 16 7.27% – –
Moving Average 20 10% – –
W. Moving Average 23 11.50% – –
RSI T. 40 0.96% – –

Total 6.057 2.268% 19 0.314%

Nevertheless, these agents do not prove clearly their ability to obtain this
performance in exploiting some kind of inefficiencies. Said differently, once
a bootstrap reality check procedure has been performed, we cannot provide
evidence that their performance is not due to mere chance.

In this research, we focus on the simplest level of the implemented MAS,
that is, Family Agents and Strategic Agents. This first step was necessary
to investigate the weak-form EMH with a broad-spectrum design. Although
we cannot provide here evidence of market inefficiencies, these results sug-
gest that more complex agents, behaving like real-world technical traders,
combining various indicators to shape their strategies, might obtain a very
different result. This last part of our work, based on Meta Agents, has still to
be perfected to capture, if at all possible, some anomalies in financial data.
Nevertheless, this is a necessary next step if one wants to invalidate the usual
objection coming from many chartists or technical traders when quantitative
analysis refute their so-called ability to outperform the market: their “knowl-
edge” is often presented as a combination of complex receipts, which make
a scientific verification difficult. MAS and Artificial Intelligence may here be
very useful to design strict and robust tests.
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5.1 Introduction

In this paper we study the evolution of bid and ask prices in an electronic
financial market populated by portfolio traders who optimally choose their
allocation strategy on the basis of their views about market conditions.

Recently, a growing literature has investigated the consequences of learning
about the returns process4. There has been an increasing interest in analyzing
what are the implications of relaxing the assumption that agents hold correct
expectations.

Under the assumption of rational expectations, agents know the true prob-
ability law underlying equilibrium economic variables, and, additionally, they
know the functional relations between equilibrium magnitudes. Therefore, the
market volatility depends uniquely on the variability of exogenous fundamen-
tal information about the external environment. This conclusion is in conflict
with many empirical studies showing that financial markets exhibit typical
anomalies like returns predictability, excess volatility with respect to the fun-
damentals, and volatility clustering.

Academic research has attempted to explain the market paradoxes intro-
ducing irrational behavior such as the existence of a certain number of noise
traders (chartists), or investors who perceive probabilities incorrectly or are
vulnerable to the impact of fads. In the last years, a new direction of research
has recognized the importance of analyzing the effect of a learning process
about the structural relationships of the economy. Learning introduces a link
between state variables and agent’s beliefs, and thus creates endogenous un-

4 See Bossaerts [4], Barberis [1], Brennan and Xia [5], Xia [18], Kurtz and Motolese
[14], Lewellen and Shanken [15], Guidolin and Timmermann [11]. See Hommes
[12], for a recent survey on heterogeneous agent models.
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certainty which depends on the distribution of agents’ beliefs, on the frequency
of change in agents’ beliefs, and on the correlation among beliefs.

The majority of the literature on asset pricing under learning has been
developed assuming a representative investor and (or) a single stock market.

By contrast, in this paper we model an artificial financial market whit
multiple risky assets and heterogeneous beliefs. To analyze the process by
which the dynamics of the learning process about the economy affect port-
folio choices and market outcomes we set up a framework where the market
volatility depends on the interaction between agents’ beliefs and market re-
sults.

In particular, we design an order book market system where agents enter
the market sequentially and trade to adjust their portfolio according to their
optimal target allocations. We create heterogeneity assuming that investors
have imperfect information about the joint distribution of returns. In partic-
ular, we allow agents to hold arbitrary priors about the univariate marginal
distribution of returns, and we make agents update those distribution using
past realized returns. We concentrate our attention on analyzing the impact
of a learning process about the marginal distributions of returns assuming
that agents have a constant common view of the assets’ association structure.
They correctly apply a copula function to generate the joint distribution of
returns to be used to determine the optimal portfolio allocations. We assign to
all agents the same investment horizon, but we create asynchronous updating
assuming that different groups of agents entered the market at different mo-
ments in time. Finally, we simplify the optimization problem assuming that
investors are myopic in the sense that, at the beginning of the investment hori-
zon they choose their portfolios as if there will be no further trading. At the
end of the investment horizon agents use the observed market prices to update
the joint distribution of returns and choose their new optimal portfolio5.

Automated systems offer advantages in terms of operating and trading
costs, but they depend on public limit orders for the provision of liquidity. The
time variation in liquidity can affect the evolution of prices, and a complex
dynamics can arise between measures of market trading activity and measures
of market volatility6.

In this paper, we analyze how the dynamics of the distribution of beliefs
over time affect market price changes. Moreover, we highlight the complex
dynamics arising between time variation in trading activity, time variation in
liquidity and quote price changes.

In Consiglio and Russino [7], using the same basic framework, we have
shown that, under learning, the automated auction system generates irregu-
lar price series characterized by sharp increases and decreases (looking like
bubbles and crashes), but that the jumps in the price series are not related

5 See Consiglio and Russino [7] for the details of the model that we implement.
6 The topic has been addressed by Domowitz in a series of papers analyzing the

market behavior of real electronic markets [e.g., 9, 8, 10].
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to sudden changes in the optimal portfolio weights. We analyzed the uncon-
ditional distribution of price changes and we provided evidence supporting
the hypothesis that the parameters characterizing the learning process affect
significantly the evolution of market liquidity, and that the variability of mar-
ket liquidity determines the observed bubble-like phenomena. This paper is an
extension of Consiglio and Russino [7] in two directions.

First, we analyze what is the role played by the assumed portfolio optimiza-
tion model in affecting the market dynamics. That is, maintaining constant all
the parameters governing the learning process, we compare two settings where
we change the utility function assigned to the agents. In the first setting, we
assume that investors’ preferences can be represented by a standard mean-
variance reduced utility function. In the second setting, we use a prospect-type
[13] preferences. In particular, we model the utility function in terms of de-
viations, measured at regular intervals, from a specified target growth rate of
wealth, and we assume that investors are more sensitive to downside move-
ments. We run a series of simulations maintaining constant the parameters
governing the learning process and we analyze the dynamics of market prices.
We find that under mean-variance choices, for each asset, the optimal tar-
get allocations show lower variability across agents and over time, reflecting
a lower sensitivity to the distribution of agents’ beliefs and to its temporal
variation.

Second, we study the time-series behavior of quote prices. We use intra–
day hourly data relative to the order flow and the structure of the order–book
to analyze the short-run impact of those variables on price changes. We esti-
mate a VAR model for bid and price changes and we include, as exogenous
regressors, variables measuring market trading activity and variables measur-
ing market liquidity. The simultaneous analysis the time series behavior of
quote prices allows to capture any asymmetries in the two series. We show
that the dynamics of the best quotes is mainly affected by the variables mea-
suring the market liquidity. The price series show self-regulating properties:
extreme movements in prices induce contra–side order activity. Past changes
in bid prices have a stronger effect on ask prices than viceversa, indicating
that contra–side selling activity is particularly strong.

The paper is structured as follows. Section 5.2 describes the market model.
Section 5.3 presents the calibration used for our simulations. Section 5.4 dis-
cusses the preliminary results obtained.

5.2 The Model

5.2.1 The Market Setting

We consider an economy with M agents and N risky assets. The market works
as a double-auction automated system. Agents, trading to reach their optimal
portfolio, enter the market sequentially. At each time step k within a trading
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day t we make the probability of entering the market for the i-th agent, Pi(E),
depend on the total imbalance between the target and the current portfolio,

Pi(E) = f(Δi) (5.1)

Δi =
N∑

j=1

∣∣∣∣h∗
ij(t, t + τ) − xt

ij(k)P t
j (k)

W t
i (k)

∣∣∣∣
where h∗

ij(t, t+τ) is the agent’s optimal target allocation for asset j, xt
ij(k)

represents the agent’s current holding in asset j, P t
j (k) is the current price for

asset j, and W t
i (k) is the agent’s total wealth given current prices and agent’s

holdings. Thus, the activation function Pi(E) reflects the urgency of trading
for the candidate agent. Agents are more impatient to trade, the more distant
is their current wealth allocation from their target portfolio.

When a trader enters the market he faces an exchange book with orders to
buy and to sell. Agents can trade immediately at the current quotes, placing
market orders, or they can submit limit orders that are stored in the exchange
book and will be executed if matching orders arrive before the end of the
trading day. Limit orders will be executed using first price priority and then
time precedence. At each moment in time during the day, the exchange book,
divided in a buy side and a sell side, shows all the orders that have been
issued up to that time and that have not found a matching order. For each
order, the order size, the limit price, and the posting time are reported. Prices
move in discrete steps, and, during each trading day, the minimum tick size
depends on the daily opening price. At the end of the trading day all orders
are cancelled. The spot price at each time step k is either the last transaction
price or the last midquote, if a change in the quotes occurred.

5.3 The Agents’ Behavior

Agents’ behavior is specified in terms of order flow strategy (number of units
to buy or to sell) and order–type submission strategy (market or limit order).

Agents trade to rebalance their portfolio. That is, at each moment in
time they trade to adjust their portfolio according to their optimal target
allocations. At time step k during trading day t, the number of units of the
j-th asset that the i-th agent is willing to trade is given by,

qt
ij(k) =

⌊
h∗

ij(t, t + τ)W t
i (k) − xt

ij(k)P t
j (k)

P t
j (k)

⌋
(5.2)

where 	·
 denotes the integer part. If qt
ij(k) > 0, the trader issues a buy

order; if qt
ij(k) < 0, the trader issues a sell order. The target allocations

h∗
ij(t, t + τ), where τ represents the length of the investment horizon, are the
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optimal solutions of the agent’s portfolio choice problem. Agents are cash
constrained. In particular, borrowing and short-selling are not allowed and
the agent’s orders can be submitted only if the money needed (MN) is not
greater than the money available (MA),

MN i(k) =

N∑
j=1

Ij
{MB}(k) q′j(k)Aj(k) +

N∑
j=1

Ij
{LB}(k)

[
qij(k) − q′j(k)

]
Pj,b(k)

(5.3)

MAi(k) = Ci(k) +

N∑
j=1

Ij
{MS}(k) q′j(k)Bj(k)7 (5.4)

where Ij
{A}(k) is an indicator variable denoting for each risky asset j if the

agent wants to issue an order; q′j(k) is the minimum between the quantity that
the agents wants to trade at current prices, qij(k), and the quantity available
at the current quote, Qj(k); and Ci(k) is the cash available to the i-th agent.
The event A can be a market order to buy (MB), a limit order to buy (LB),
or a market order to sell (MS). If MN i(k) ≤ MAi(k), then all the orders
that the agent wants to issue will be submitted. If MN i(k) > MAi(k), then
for each asset j the number of units to trade is scaled down until MN i(k) =
MAi(k). The quantity adjustment keeps constant, with respect to the total,
the percentage of money to allocate in each asset. The adjustments imposed
by the budget constraint are performed giving priority to the submission of
market orders to buy. Only if some money remains available after all market
orders to buy have been processed, the procedure to check for the availability
of money for submitting the desired limit orders to buy starts. Otherwise, the
limit orders to buy are all cancelled.

We specify exogenously the order–type submission criterion. That is, we
assume that traders want to satisfy their trading needs as soon as possible,
and thus they will submit a market order at the current quote for the quantity
they need to trade. Limit orders are used only if for some j the corresponding
qt
ij(k) is greater than the quantity available at the current quote. In this case

the agent places a market order for the quantity available, and for the residual
quantity, given by qt

ij(k)−Qt
j(k), he will submit a limit order. The associated

limit price will be such that the order will be first on the appropriate side of
the book, so we have that,

P t
j,b(k) = Bt

j(k) + εt

P t
j,s(k) = At

j(k) − εt

where Bt
j(k) and At

j(k) are respectively the best bid and the best ask in the
order book, and εt is the minimum tick size for trading day t. When there are
no orders on the relevant side of the book to match with, the agent will place
directly a limit order for the whole quantity needed, qt

ij(k), at a price that
will make him first on the book.
7 To simplify the notation we drop the superscript indicating the trading day



68 Andrea Consiglio et al.

5.3.1 The Learning Process

We assume that investors have imperfect information about the joint dis-
tribution of returns, and that they must learn about the unknown returns
generating process using the available information. In particular, we allow
agents to hold arbitrary marginal prior densities for the assets returns. We
model the prior marginal returns distribution of each asset as a Dirichlet with
parameters (α1, . . . , αC) where C is number of classes of the support of the
returns distribution. Thus, we assign to the agents populating our economy
arbitrary prior densities given by,

fij(θ) =
Γ (αij1 + . . . + αijC )

Γ (αij1) . . . Γ (αijC )
θ

αij1−1
1 . . . θ

αijC−1
C (5.5)

where θ1, . . . , θC ≥ 0;
∑C

c=1 θc = 1, i = 1, . . . , M , and j = 1, . . . , N . Agents
will use the history of observed market returns to update their beliefs in a
bayesian fashion. Letting υjc be the number of returns observed, for the j-
th asset, in class c during the time period between two successive updating
days, the posterior distribution of the i-th agent for the returns of asset j will
be Dirichlet with parameters ((αij1 + υij1), . . . , (αijC + υijC)). To determine
the optimal portfolio composition, agents should know the joint probability
distribution of assets returns. We assume that agents share a common con-
stant view of the securities association structure, and that they correctly use
a copula function8 to generate the N -variate returns distribution from their
arbitrary set of N univariate distributions. We use The Gaussian copula to
model the dependence structure between the risky asset. Given their own
marginal univariate returns distributions and the assigned copula, agents ex-
tract from the multivariate distribution of returns a number S of scenarios.
Each scenario specifies a return for each of the N risky assets for all the time
periods in the investment horizon of the agent. Every scenario represents a
possible future realization of returns, for the N assets, given the agent’s joint
probability distribution. Agents use the S extracted scenarios to determine
the optimal composition of their portfolio.

5.3.2 The Portfolio Model

We compare two cases. In the first case, we assume that investors, consis-
tently with their rational learning process, choose their portfolio maximizing
their expected utility of the end of horizon financial wealth. We assign to the
agents a standard mean–variance expected utility function so that the agent’s
portfolio problem is simply,

max
h

E[U(W̃T )] = max
h

{μ′h− λ

2
h′Σh | i′h = 1;h ≥ 0} (5.6)

8 See [17, 16].
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where μ and h are the n-vectors of rates of returns and target allocations,
Σ is an (n, n)-positive definite covariance matrix, and λ is the risk aversion
parameter.

In the second case, we introduce an element of irrationality assigning to
the agents prospect–type preferences [13]. We assume that each investor has
an initial level of wealth and a target growth rate to reach within his in-
vestment horizon. The investor must determine an asset allocation strategy
so that the portfolio growth rate will be sufficient to reach the target. We
model the utility function in terms of deviations, measured at regular inter-
vals, from the specified target, and we assume that investors are more sensitive
to downside movements. Our approach is inspired to the descriptive models
about investors’ choices followed by [3, 2]. The target portfolio holdings are
determined using the scenario optimization model developed in [6].

Let ũt and d̃t be two random variables which define the upsides and down-
sides in each time period t = 1, 2, . . . , T , the random variables D̃T and ŨT

which accounts respectively for the final deficit and surplus are given by,

D̃T =
∑T

t=1 d̃t

ŨT =
∑T

t=1 ũt

The investor will determine his portfolio by solving the following multi-
objective programming model

Maximize
h

E[ŨT ] − λE[D̃T ] (5.7)

s.t.
h ∈ H, (5.8)

where λ > 0 is the loss aversion parameter.

5.4 Results

5.4.1 Simulation Parameters

We define a setting where agents are equal in terms of endowments, trad-
ing strategies, investment horizons, risk profiles, institutional constraints, and
type of information used to update prior beliefs. The main source of hetero-
geneity is given by the different set of prior univariate marginal distributions
of returns that we assign to each group of agents.

We run our simulations with a population of M = 6000 potentially active
traders, T = 2280 trading days, and N = 3 risky assets. Each trading day is
divided in K = 360 time steps corresponding to a trading day of six hours,
assuming a time step k equal to one minute. Every agent gets an initial en-
dowment in each of the N stocks of our economy of 50 shares, and a cash
endowment of Ci = EUR1000. Initial prices are set equal to 100e. Agents are
divided in G = 6 equally sized groups. All the agents in a group share the same
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view about the joint distribution of returns. We create agents’ heterogeneity
assigning to each group of agents a different set of prior univariate marginal
distributions of returns. We divide the population in pessimists and optimists.
That is, we assume that the univariate marginal priors reflect agents expecta-
tions about market performance. Thus, a group of pessimistic agents will have
a set of prior distributions, one for each of the N risky assets, with a support
shifted to the left, while a group of optimists will have priors with support
shifted to the right. The constant correlation matrix used by all agents to
obtain the joint distribution of returns can be of two types: one with negative
correlations among the three assets, and one with positive correlations.

All agents have the same type of objective function, the same risk measure
λ = 2.25, and the same investment horizon of H = 240 days, corresponding to
one year assuming a trading week of five days. The target portfolio return, gi,
is different between pessimistic and optimistic agents: gi = 10% for pessimists
and gi = 20% for agents with optimistic views. To maintain an active market
over time, we simulate a setting where agents have not entered the market at
the same time. That is, we assume that every I = 20 days, one group reaches
the end of his investment horizon, and all the agents in the group update
their view about the joint distribution of returns using the history of observed
returns. The posterior distribution of returns is then used to determine new
optimal target allocations h∗

ij(t, t+τ). To create a history of prices that agents
can use to update their priors, for the first 240 days, we run our simulations,
using randomly assigned target allocation vectors. That is, during the initial
period each group of agents gets target allocation vectors sampled from a
Dirichlet(1,. . . 1;1). To maintain, over the entire length of the simulations, a
market structure homogeneous in terms of trading activity, during the initial
period, we randomly extract one group of agents every I = 20 days, and we
assign to all the agents in the selected group new random target allocations.
The minimum tick size is 1% of the opening daily price.

5.4.2 Comparison Between the Portfolio Models

To compare the effect of learning on prices under the two different portfolio
models, we run simulations where we maintain constant all the parameters
and the seed number but we change the portfolio model used by the agents.

Fig. 5.1 shows the times series of the prices of the three assets generated
in the two different settings. In the upper panel we plot the price series corre-
sponding to the case where agents use a reduced mean–variance utility func-
tion (MV) both for the case of negative association structure among the N risky
(left, NMV) and the case of positive association (right, PMV). In the botttom
panel we display the time series of prices determined under the prospect–type
preferences (TR) in the two cases of negative and positive association (left,
NTR and right panel, PTR).

Clearly, the price series generated under prospect-type preferences are
more irregular, and present sharp upward and downward movements. The dif-
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Fig. 5.1. Daily time series of prices for the different settings. From the upper–left
to the right–bottom panel, we display the NMV, PMV, NTR, and PTR

ference becomes more pronounced in the series generated assuming a positive
association structure among the risky assets. The positive correlation setting
is the setting where the agents have less scope for diversification and, thus,
where agents’ choices are more influenced by the marginal univariate distribu-
tion of returns. The visual inspection of the plots suggests that prospect-type
preferences make agents’ choices, and consequently prices, much more reactive
to agents’ views. We build an aggregate measure of the agents’ heterogeneity
in terms of optimal allocation, every I = 20 days, summing the euclidian dis-
tance between each possible pair of target allocation vectors. Since there are
12 groups, we take the sum of 66 euclidian distances. Similarly, we build a
measure of the agents’ heterogeneity in terms of views summing, every I = 20
days, the Δ-Distance between each possible pair of joint distributions of re-
turns. Given two joint distributions discretized in N classes and letting pi and
qi be respectively the probability of having one observation in the i-th class
under the two joint distributions the Δ-Distance is given by,

Δ(p, q) =
C∑

i=1

(pi − qi)
2

pi + qi

In Fig. 5.2 we plot the time series of the aggregate euclidian distance between
optimal allocation vectors and of the aggregate Δ-Distance between the joint
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distributions of returns for the two cases of mean-variance and prospect pref-
erences. Clearly, the portfolio model based on prospect preferences makes the
action choices extremely sensitive to the agents’ views. Agents optimal allo-
cation vectors are more variable across agents over time reflecting the agents
diversity in terms of beliefs. The greater heterogeneity of agents’ optimal tar-
get allocation induced in the market setting based on prospect preferences
generates a more intense trading activity and that in turn produces irregular
price series.
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Fig. 5.2. In the upper panels we report the aggregate distance between the target
allocations and the joint distributions across groups over time for the PTR setting on
the left, and for the PMV setting on the right. The bottom panels show the temporal
behavior of the aggregate distance between the joint distributions (left), and of the
aggregate distance between the target allocations (right) for all the settings.

5.4.3 Quote Price Dynamics

In an automated market system the temporal behavior of prices depends on
the endogenous ability of the market to maintain liquidity, generically defined
as the market ability to closely pair the desires of buyers and sellers. The
temporary lack of liquidity and accumulation of orders on one side of the book
can generate jumps in prices. To highlight the relations between price changes,
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trading activity, and liquidity, we analyze the dynamics of ask and bid quotes
in the setting with prospect-type preferences and positive association structure
among the risky assets (PTR). As we have seen, this setting is characterized
by the highest heterogeneity across agents over time, and therefore is the
setting generating the highest trading activity. Using hourly data for 480
days, we estimate a VAR model for logarithmic change of the best bid and
of the best ask prices. We specify as exogenous variables, a set of variables
measuring the liquidity of the market (the log-spread, St, and the imbalance
between the queues of the buy and the sell side of the book, ΔQt), and a set
of variables measuring the trading activity (the number of transactions, Mt,
the trading volume, Vt, and the average waiting time between transactions,
WTt). We interpret missing values of the best ask and of best bid series as
cases where the market price is so low or so high (in the case of the bid
price) that nobody is willing to trade. Thus, we substitute missing values of
the two series respectively with the minimum and the maximum value of the
series. As we can see from Table 5.1 the two series are highly and persistently
negatively auto–correlated. Interestingly, the two series are also negatively
cross–correlated: an increase in the best bid will induce after same time a
decrease in the best ask and viceversa. The impact of changes in the best
quote of the opposite side of the market is stronger in the case of ask prices.
All that suggest that the market displays self-regulating properties: waves
of agents on one side of the market causing extreme movements in prices
are followed by contra–side order flow activity. The phenomenon is stronger
in the case of up movements in prices. Generally, the evolution of the best
quotes is affected mostly by the variables related to market liquidity. The
log-spread has a contemporaneous negative effect on ask prices and a positive
contemporaneous effect on bid prices. Additionally, increases of the log-spread
lead after some time to increases in the ask quote and to reductions in the
bid quote. All that suggest that increases in the spread are related to the
occurrence of either selling waves depleting the bid book, or buying waves
that scale up the sell side of the order book. Lastly, past imbalances between
the buy and the sell queue of the order book have a significant persistent
positive effect on both ask and bid prices. The variable measuring the trading
activity are less important to explain the evolution of ask and bid prices. The
fact that the trading volume is negatively related to changes in ask prices and
that the number transactions is negatively related to changes in bid prices
suggest that an increase in trading activity has an influence on quote prices
when it is caused by selling transactions.
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Table 5.1. Results of the VAR model estimated for the log–changes in quote prices
in the PTR setting. On the left we report the results for the log–changes of the best
ask. On the right we report the results relative to log–changes of the best bid.

Coef. Std. Err. z P > |z|

ΔA

ΔA
t−1 -.63821 .01913 -33.36 0.000
t−2 -.46144 .02075 -22.24 0.000
t−3 -.29403 .02055 -14.31 0.000
t−4 -.20264 .01857 -10.91 0.000
t−5 -.10818 .01514 -7.14 0.000
ΔB
t−1 -.05920 .02354 -2.51 0.012
t−2 -.07276 .02548 -2.86 0.004
t−3 -.00864 .02524 -0.34 0.732
t−4 .02766 .02337 1.18 0.237
t−5 -.00171 .01909 -0.09 0.928
S
t -6.15645 .22866 -26.92 0.000

t−1 1.91701 .29868 6.42 0.000
t−2 1.13451 .29154 3.89 0.000
ΔQ

t -.02870 .00523 -5.49 0.000
t−1 .02482 .00595 4.17 0.000
t−2 .04457 .00539 8.26 0.000
M
t .00214 .00133 1.60 0.109

t−1 -.00056 .00133 -0.42 0.677
V
t -.00027 .00010 -2.74 0.006

t−1 .00011 .0001 1.11 0.266
WT

t -.00076 .00012 -6.42 0.000
t−1 .00091 .00012 7.69 0.000
c .07997 .01769 4.52 0.000

Coef. Std. Err. z P > |z|

ΔB

ΔA
t−1 -.03478 .01570 -2.22 0.027
t−2 -.05118 .01703 -3.01 0.003
t−3 -.01967 .01686 -1.17 0.243
t−4 -.00930 .01524 -0.61 0.542
t−5 .00354 .01243 0.29 0.776
ΔB
t−1 -.65867 .01932 -34.10 0.000
t−2 -.44952 .02091 -21.50 0.000
t−3 -.30637 .02071 -14.80 0.000
t−4 -.21214 .01918 -11.06 0.000
t−5 -.11197 .01566 -7.15 0.000
S
t 5.14180 .18762 27.41 0.000

t−1 -2.08803 .24508 -8.52 0.000
t−2 -1.31587 .23922 -5.50 0.000
ΔQ

t .00156 .00429 0.36 0.715
t−1 .02058 .00488 4.22 0.000
t−2 .03995 .00443 9.03 0.000
M
t -.00446 .00109 -4.08 0.000

t−1 .00012 .00109 0.11 0.915
V
t -.00007 .00008 -0.84 0.403

t−1 .00015 .00008 1.81 0.071
WT

t -.00018 .00010 -1.84 0.066
t−1 -.00033 .00010 -3.42 0.001
c .00103 .01452 0.07 0.943
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Summary. Agent-based simulations show that some kinds of speculators are able
to stabilize the price in a market and to make this market more efficient. Instead of
a single market, we consider a supply chain comprising a sequence of three markets
in order to check that such speculators can also stabilize a supply chain. Specifically,
we verify if these speculators reduce the price fluctuations caused by a phenomenon
called the bullwhip effect, which is the amplification of order variability in supply
chains. Our simulations show that speculation reduces such price fluctuations, even
if price bubbles may appear. Another point is that the speculators we consider lose
money in reducing these fluctuations while all the other agents would get richer and
richer when the equilibrium is achieved in every market of the supply chain.

6.1 Introduction

Empirical evidence shows that orders in a supply chain are more variable for
raw material producers than the initial demand addressed by end-customers
to retailers. This phenomenon of amplification of order variability is known
as the bullwhip effect [3]. The problem with the bullwhip effect is not only its
essence itself, i.e., demand becomes more variable along the supply chain, but
also the fact that it makes demand less predictable. Both increased variability
and unpredictability cause important financial costs due to higher inventory
levels and agility reduction. As an insight into the importance of these inef-
ficiencies, Carlsson and Fullér [1] claim that the bullwhip effect would cost
100-200 MFIM (17-34 million euros) per year to the Finnish forest products
industry, which has a total turnover of more than 100 BFIM (17 billion eu-
ros). The solution most often proposed to the bullwhip effect is information
sharing [9], but other proposed solutions have included: EDLP (Every Day
Low Pricing) policy or the allocation of sales based on past sales [3]. See [6]
for a literature review of known causes with their solutions. In this paper,
we study whether the presence of speculators could serve as another solution,
which seems to be an approach never investigated before. More generally, we
investigate interactions between related markets.
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To this end, we see our supply chain as a sequence of markets, then we
apply approaches stabilizing a single market to stabilize our supply chain.
Steiglitz and his colleagues [5, 10, 11] provide us with such market-stabilizing
approaches. In fact, they analysed the behaviour of a quite general market
in which they noted that the presence of speculators (agents who simply try
to buy low and sell high) are beneficial to all agents1. Specifically, adding
the two considered kinds of speculators stabilizes the price of the only con-
sidered good2, and this stabilization “results in an overall increase in market
efficiency and fluidity, in the sense that individual production decisions are
more closely matched to skill, and the numeraire is more easily converted into
accumulated wealth” [10, p. 3]. In this paper, we study whether one of these
same two kinds of speculators also stabilizes supply chains, in order to have a
new solution to the bullwhip effect. Our concern deals with neither the reason
for speculation (e.g. is speculation either an irrational behaviour, a rational
behaviour due to asymmetric information, or a rational behaviour due to dif-
ferent degrees of risk aversion [4]) nor its potentially harmful consequences
(e.g., bubbles, crashes and continued high trading volume [7]), but we only
focus on the potential benefits of the aforementioned type of speculators for
a supply chain.

This paper is organized as follows. Section 6.2 presents the simulation
model. Then, Section 6.3 outlines the results obtained with this model. Sec-
tion 6.4 presents how our speculators behave in a reproduction of their original
environment proposed in [10, 11]. Section 6.5 discusses our approach.

6.2 Simulation Model

6.2.1 Overview of the Model

We have implemented our supply chain as three inter-linked marketplaces
along which a single type of product is traded. As shown in Figure 6.1, these
marketplaces are linked by companies, that is, paper mills and sawmills buy
in one market and sell in another.

To be precise we use the settings outlined in Figure 6.1, that is, 25 end-
customers buy furniture sold by 6 paper mills, which buy lumbers from 4
sawmills, which buy raw wood from 2 raw material suppliers. Figure 6.1 also
shows that speculators buy and sell in the same market. We use the open-
source JAVA Auction Simulator (JASA) [8] to implement each of the three
marketplaces. Specifically, JASA provides several types of auctions (ascending
auction, double auction, etc.) to represent each of our three markets, and,
for the moment, we use a double auction for every marketplace. We have

1 Kaldor [2] presents a defence of speculation in terms of economic stability.
2 In this model, agents exchange gold for food, consumes one unit of food per day,

and produces gold and food. Production skills of gold and food are different from
each other, specific to individuals and constant over a simulation.
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Fig. 6.1. Supply chain structure

extended JASA to have our three inter-linked marketplaces so that, at every
round, the furniture market is activated first (i.e., end-customers may place
a bid shout while paper mills may place an ask shout, then the furniture
auctioneer calculates the clearing price, and finally physical exchanges take
place at that price), next the lumber market, then the wood market, and
finally a new round starts with the furniture market.

Let us now outline the two types of agents in our model, namely, com-
panies and speculators. As can be seen in Figure 6.2, the representation of
companies complies with the first level of the model SCOR from the Supply
Chain Council [12], that is, companies are made of three functions:

(i) deliver is implemented as an inventory of finished products and a func-
tion to place ask shouts to sell products, (ii) make is the work-in-process
inventory in which batches of items have to spend the production time before
moving from the raw material inventory to the finished product inventory,
and (iii) source is similar to deliver, except that its inventory contains raw
materials and its function places bid shouts to buy products. Both asking
and bidding functions depend on the capacity of their respective inventory.
The asking function is the same as the bidding function to which we add a
constant called margin because products have to be sold at a higher price
than what they were bought plus production cost. Basically, a company is

sourcemakedeliver

inventory of finished products
work−in−process inventory

inventory of raw materials

product flow

order flow

Fig. 6.2. Model of company.
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thus represented by at least eleven parameters:

• 3 inventory capacities, i.e., one per inventory (but more when companies
buy, sell and produce different types of products, which is not the case in
this paper);

• 1 production rate (but more in general, when companies produce different
types of products);

• 1 production cost called margin (but more in general, when companies
produce different types of products);

• 3 parameters of the bidding function, because we use an adaptation of
Steiglitz and his colleagues’ function [5, 10, 11] which has three parameters;

• 3 parameters of the asking strategy, for the same reason as for the bidding
strategy.

For simplicity, transportation is supposed instantaneous, production rate and
inventory capacities are the same among agents, and, for every agent, the bid-
ding function uses the same parameters as the asking function. More precisely,
an agent is charaterized by the three parameters of its bidding function (the
asking function having the same parameters).

6.2.2 Details of the Different Types of Companies

Whenever possible, we use the same parameters as presented by Steiglitz and
Sha-piro [11], e.g. the initial funds of all agents is 60 units, and the initial
(source or deliver) inventory level is uniformly randomly distributed between
15 and 20 units. The initialisation of every parameter is the same for all the
companies in all the results presented in this paper. In other words, we do not
change the seed of the pseudo-random number generators, so that Agent 0
(an end-customer) always begins with 17 units in its source inventory while
Agent 1 (another end-customer) always stars with 19 units. Because of our
adaptation of Steiglitz et al.’s model [5, 10, 11] to supply chains, additional
parameters are necessary. The main ones are as follows:

• End-customers consume 1 unit of furniture per week, which is similar
to [11], except that only end-customers are consumers. In order to afford
this furniture, end-customers produce 5 units of money per week. Con-
versely to Steiglitz et al.’s model [5, 10, 11], only end-customers produce
money, and they produce that money every week without having to choose
what to produce.

• Manufacturers (i.e. paper mills and sawmills) have a capacited make func-
tion. Every manufacturer can produce a batch of exactly 10 units every
week. They produce a new batch of products whenever possible, that is,
every week in which 10 items are available in their source inventory.
Manufacturers have a parameter margin in order to sell at a higher price
than what they previously paid for the items to process. More precisely,
when they place a ask shout, they add margin to the price that Steiglitz
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et al.’s model [5, 10, 11] would normally choose3. Currently, sawmills have
margin = 2 and paper mills margin = 3. We will see that this margin
moves up the equilibrium price in every market of the supply chain.

• Raw material suppliers are special manufacturers because they also pro-
duce 10 units every week, except that they do not need to buy components
first. In fact, raw material suppliers are the opposite from end-customers,
that is, every end-customer is an infinite source of money and a product
sink, while each raw material supplier is an infinite source of products and
a money vacuum cleaner (but not a money sink).
As paper mills and sawmills, raw material suppliers have a margin set
to 1.

6.2.3 Details of the Speculators

Conversely to companies, speculators buy and sell in the same market. We
reimplemented the same two types of speculators as Steiglitz et al. [10, 11].
Like other agents, speculators have no inventory holding cost, and they do
not look for selling items as soon as possible. All speculators own 60 units of
money at the beginning, which is the same amount as the companies. We use
the type of speculators called AVG (for average) which use a moving average
to update their forecast of the price of the product. If we call P the actual
price and P̂ the forecasted price, then the forecast of the current price is
P̂ (t) = β.P̂ (t − 1) + (1 − β).P (t − 1) for some coefficient β ∈ (0, 1). Then, a
ask shout P (t − 1).(1 + margin) for all the owned products is placed when
P (t − 1) < P̂ .(1 − margin), and a bid shout P (t − 1).(1 − margin) for all
affordables products when P (t − 1) > P̂ .(1 + margin). As in [11], β = 0.008
and the margin of the speculators is fixed at the beginning of a simulation
by uniformly dividing the interval [0.0, 0.5].

6.3 Results

6.3.1 Reproduction of the Bullwhip Effect

Before studying how speculators may reduce the bullwhip effect, we first
present how this phenomenon shows in our model. Figure 6.3 displays the
price at which good are exchanged every week (in every subfigure, time is
displayed between Week 0 and 500, and price between 0 and 80). Specifically,
you can see in Figure 6.3(a) that the price of wood is more stable than the
price of lumber in Figure 6.3(b) which is itself less variable than the price
of wood in Figure 6.3(c). These three subfigures do not reflect the bullwhip

3 This is a first step. In future work, the sell price of finished products will depend
on the buy price of its components, or at least, on the current price of these
components.
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Fig. 6.3. Amplification of price fluctuations in the supply chain without speculators
(the three subfigures have the same scale)

effect itself but its consequence on price. Since the bullwhip effect is defined
as the amplification of order variability, we should use the quantity requested
in bid shouts to describe this effect. However, since all agents have the same
form of utility function, we think the shape of the figures would be the same.

As previously said in Footnote 3, the price in one market has no direct
impact on the price in another market. That is, a company may buy expensive
components in order to produce then sell cheap products. We will implement
in future work such a “price stream” in our model. At the moment, companies
are only linked through a stream of orders/bids and a stream of products.
However, Figure 6.3 shows that the interactions between these two streams is
enough to create a bullwhip effect which causes greater price fluctuations in
wood market than in furniture market.

6.3.2 Impact of Speculators on the Price Fluctuations Caused by
the Bullwhip Effect

Next, we add speculators in the lumber and wood markets. We do not add
speculators in the furniture market because of the characteristics a good needs
to possess to be speculated. In fact, according to Kaldor [2, p. 20], these
“attributes are: (1) The good must be fully standardised, or capable of full
standardisation; (2) It must be an article of general demand; (3) It must be
durable; (4) It must be valuable in proportion to bulk.” As a consequence, raw
materials, such as the lumbers and wood, are more likely to be speculated,
conversely to finished products as furniture.

Figure 6.4 presents price fluctuations in every market when 5 specula-
tors trade in the lumber and/or the wood markets (specifically, there are 5
wood speculators in the supply chain outcomes presented in Subfigures 6.4(a),
6.4(b) and 6.4(c), 5 lumber speculators in Subfigures 6.4(d), 6.4(e) and 6.5(f),
and 5 lumber speculators and 5 wood speculators in Subfigures 6.4(g), 6.4(h)
and 6.4(i)), and, similarly, Figure 6.5 shows price evolution when 25 specula-
tors trade in the lumber and/or wood markets.

We can note that the price in the wood market stabilizes when wood
speculators are added, because the price in Subfigures 6.4(c) and 6.5(c) is
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Fig. 6.4. Amplification of price fluctuations in the supply chain with 5 speculators
(all subfigures have the same scale as Figure 6.3)

more stable than in Subfigure 6.3(c). Moreover, 25 speculators have a greater
stabilising effect than only 5, because the price in Subfigures 6.5(c) is more
stable than in Subfigures 6.4(c). When we compare these same two subfigures,
we can also notice that 25 speculators allow the price to stabilise quicker than
with only 5 speculators. The same conclusion may be drawn when speculators
are only added to the lumber market (cf. Subfigures 6.3(b), 6.4(e) and 6.5(e)).
Since this paper addresses the impact of speculators on the bullwhip effect, we
can first conclude that the type of speculators we consider is able to stabilise
the price fluctuations caused by the bullwhip effect.

However, the smaller and shorter price fluctuations brought by speculators
seem to be (sometimes) replaced by price bubbles of large amplitude. For
instance, Subfigure 6.5(c) is much more stable than Subfigures 6.3(c), except
that it has a single price bubble which is huge. Indeed, while no speculators
lead to price fluctuations, too many speculators lead to price bubbles: there
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Fig. 6.5. Amplification of price fluctuations in the supply chain with 25 speculators
(all subfigures have the same scale as Figure 6.3)

seems to be an optimal number of speculators for every market in the supply
chain. The question is thus how many speculators to use and where. For
example, Subfigures 6.4(d), 6.4(e) and 6.4(f) are the most stable among all
the subfigures in Figures 6.3, 6.4 and 6.5, while they do not use the largest
number of speculators. On the contrary, the graphs in Figure 6.5 are more
stable than in Figure 6.4 (i.e., if you compare Subfigure 6.4(n) with Subfigure
6.5(n)), except that there are a few price bubbles of large amplitude.

On the other hand, adding 5 wood speculators to Subfigure 6.4(f) destabi-
lizes the wood market in Subfigure 6.4(i), which next destabilizes the lumber
market in Subfigure 6.4(h). This seems to confirm that our simulation model
allows to make a link among the stability of different markets. That is, spec-
ulators first stabilize their market, then other markets. And also, speculators
first create a price bubble in their market, which next destabilises another
market.
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Supply chain level
0 lumber speculator
& 0 wood speculator

μ σ
End-customers 1,112.4 627.4
Paper mills 285.2 768.3
Sawmills 640.8 1,198.0
Raw material suppliers 18,793.0 592.2
Lumber speculators
Wood speculators

Supply chain level
0 lumber speculator 5 lumber speculators 5 lumber speculators

& 5 wood speculators & 0 wood speculator & 5 wood speculators
μ σ μ σ μ σ

End-customers 1,152.4 622.2 956.5 602.3 960.8 689.6
Paper mills 321.6 705.8 1,915.2 3,117.2 560.6 1,138.4
Sawmills 962.2 1,113.8 3,661.3 4,260.2 923.0 1,098.1
Raw material suppliers 17,702.3 38.8 9,718.6 33.1 19,206.0 421.4
Lumber speculators 96.6 49.0 0.2 3.7
Wood speculators - 4.2 7.5 156.4 237.9

Supply chain level
0 lumber speculator 25 lumber speculators 25 lumber speculators

& 25 wood speculators & 0 wood speculator & 25 wood speculators
μ σ μ σ μ σ

End-customers 2,072.1 593.2 1,892.5 640.6 2,028.1 497.0
Paper mills - 137.6 248.3 471.2 1,241.5 - 31.4 92.7
Sawmills 1,457.3 3,130.2 970.4 1,281.5 560.7 1,131.5
Raw material suppliers 7,273.0 86.6 8,626.9 366.7 9,434.1 277.1
Lumber speculators - 4.2 8.3 - 3.7 9.4
Wood speculators - 7.3 10.7 45.5 102.4

Fig. 6.6. Average funds and standard-deviation of funds between parentheses per
level in the supply chain at Week 500.

Final, every market of the supply chain always reach its equilibrium price
within 500 weeks. This equilibrium price is defined by the margin of the
company selling in the considered market. As a consequence, the equilibrium
price is 1 in the wood market, 2 in the lumber market and 3 in the furniture
market.

6.3.3 Financial Aspects of Speculation in our Supply Chain Model

Another important point is the financial impact of speculation on companies
and the cost efficiency of speculators. The table in Figure 6.6 presents the
average amount and the standard-deviation of the money owned by the com-
panies in every level of the supply chain. Three points can be noticed in this
table:

• The money ends up with the raw material suppliers: The end-customers
produce money which is next transferred to the raw material producers
through the paper mills and the sawmills (and possibly via the specula-
tors). These latter companies do not retain much of the money which goes
through them. Of course, if simulations were run for a longer duration,
the paper mills and sawmills would earn more and more money since,
at the equilibrium of every market, they sell at one unit of money more
expensive than they buy. This benefit is allowed by the use of different
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margin, which, as we have already said, move up the equilibrium price.
As a consequence, many paper mills and sawmills have a negative amount
of money in Week 500, but they would earn an infinite amount of money
if the simulation was run forever. Nevertheless, they would still remain
poorer than the raw material producers

• The end-customers seem to produce money at a good rate: In the considered
first 500 weeks, producing 5 units of money per week seems to be the good
rate because all end-customers have positive funds in Week 500. Since the
equilibrium price of the furniture market is only 3 (because of the margin
of paper mills), end-customers, as the other companies, would therefore
become richer and richer in infinite simulations.

• Speculators are not cost efficient: Our speculators never earn a large
amount of money. For instance, they own a maximum average amount
of 156.4 shared among 5 wood speculators, but the corresponding large
standard-deviation of 237.9 indicates that several of these speculators have
negative funds in Week 500. Yet, speculators, like all agents, start with 60
units of money.
This remark about the poor cost efficiency of speculators is rather counter-
intuitive! In addition, speculators are the only agents in our simulation
which loose money. And this latter point would not change if simulations
were longer, because all simulations end with a market at the equilibrium
in which they cannot trade, thus, earn money.

6.4 Related Work

In this section, we outline our reproduction of Steiglitz and his colleagues’
model [5, 10, 11]. As for our supply chain simulation, we use the parameters
in [11]. More precisely, the speculators used here are exactly the same as those
used in our supply chain, and the trading agents share most of their code (in
particular, their bidding strategy and their valuation policy) with our supply
chain agents.

Figure 6.7 shows that the speculators are as efficient in stabilising the
price in our supply chain as in a single market. Subfigures 6.7(a) and 6.7(b)
show that the speculators have a stabilising effect, and the table in Subfigure
6.7(c) that the speculators lose money when they trade (they all begin with
60 units of money and, on average, end up with a negative amount). As in our
supply chain simulation, traders should pay the speculators to bring stability.
Speculation does not seem to increase greatly the average welfare of traders (i.e
the average final amount of money only increases from 616.4 to 664.0, which
is not significant since only one simulation run is considered), but money is
much better shared between the traders (i.e. the standard-deviation of final
funds decreases by two orders of magnitude from 1,395.7 to 67.6).
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(b) 25 speculators

Agent type 0 speculator 25 speculators
μ σ μ σ

Traders 616.4 1,395.7 664.0 67.6
Speculators - 3.5 4.6

(c) Average and standard-deviation of
funds at Week 500.

Fig. 6.7. Reproduction of Steiglitz et al.’s experiments [5, 10, 11] (all subfigures
have the same scale as Figure 6.3).

6.5 Discussion

Since speculators lose money when they stabilize the supply chain, then com-
panies should pay them for their service of stabilisation. The question is then
who should pay for this stability? Since price stability can be seen as a com-
mon good (or, at least, serice), a prisonner’s dilemma may occur, that is,
everyone would like money be given to speculators, but nobody wishes to pay
because all companies prefer all other companies pay but not themselves.

Another point to consider is the second type of speculators proposed by
Steiglitz et al. [10, 11], namely DER speculators (for derivatives). These spec-
ulators estimate the second derivative of the price slope. They sell when the
slope of the price is increasing and buy when the slope is decreasing. Perhaps
these agents can both stabilize our supply chain and be cost efficient.

6.6 Conclusion

This paper has proposed to use some sort of speculators to reduce the bullwhip
effect, which is the amplification of order variability in a supply chain. Re-
ducing this effect is important because it costs money to the companies due
to higher inventory levels and because the bullwhip decreases supply chain
agility. To our knowledge, using speculators as a solution to the bullwhip ef-
fect is a new approach. We have explored this idea by means of a computer
simulation of a supply chain, in order to quantify the impacts of speculation
on the price fluctuations caused by the bullwhip effect.

This is still a preliminary work, but three conclusions can be drawn. The
first one is that adding a few speculators stabilizes the price in the market of
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the supply chain in which they are introduced. The second conclusion is that
price bubbles may appear, and this seems occur when too many speculators
are used. Finally, our speculators are not cost efficient and lose their initial
level of money to an amount near zero.

As future work, we intend to run more experiments to confirm the con-
clusions in this paper. We also plan to compare different types of speculation
(financial vs. stock) and study the potential benefits of futures contracts in
supply chains. An application of these ideas concerns the effective control
of online marketplaces, such as those emerging for scientific and commercial
computational resources known as the GRID. If the presence of speculators in
markets is shown to reduce the bullwhip effect, then designers of GRID dis-
tribution chains may engineer their systems to include artificial speculators.4
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7.1 Introduction

Market processes involve simultaneous interactions among firms and con-
sumers. Firms target segments with abundant “resources” (i.e. high purchas-
ing power or just demand), while consumers search for firms’ offers that best
match their preferences. We explore implications of this dual interaction in
which large-scale and small-scale firms compete in an initially established
peaked resource space with a center, where resources (i.e. consumers) at the
starting date (time = 0) are assumed to be more abundant in the central
region than in the periphery. The resource space represents the distribution
of consumers along a one-dimensional set of taste preferences. We explore
the implications for the evolution of market structure (number of firms and
market concentration) under this rendering by means of an agent-based sim-
ulation model. We derive two patterns of results. First, when firms move to
the best spots in the market and consumer mobility along the taste positions
is prohibited (i.e. the resource space shape is constant over time), the market
exhibits high concentration with first increasing and then declining number
of firms, although such number remains relatively high. Second, when con-
sumers are allowed to update their taste preferences while searching for a
best match, the increased concentration pattern may be broken down and a
higher small-scale firm proliferation might be observed. In addition, consumer
mobility reinforces the large-scale firms’ space contraction.

7.2 Background

In recent years, co-evolutionary processes of markets and organizations have
started to draw attention of social scientists, in both theoretical and empirical
domains. Researchers have addressed co-evolutionary issues related to, among
others, empirical studies design (Lewin and Volberda 1999), price dispersion
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effects (Kirman and Vriend 2001), joint ventures (Inkpen and Currall 2004),
strategic alliances (Koza and Lewin 1998), and market dominance (Harrington
and Chang 2005).

Organization Ecology (Hannan and Freeman 1989) has shown that, in
many instances, consumers are allocated according to a unimodal distribution
in a space of taste preferences (Carroll et al. 2002; Boone and Witteloostu-
ijn 2004; Witteloostuijn and Boone 2006). Market configurations that emerge
in such resource peaked spaces (Carroll and Hannan 1995) have been exten-
sively studied empirically in a wide variety of industries such as newspapers
(Carroll 1985; Boone et al. 2002, 2004), breweries (Swaminathan 1998; Car-
roll and Swaminathan 2000), automobile manufacturers (Dobrev et al. 2001),
wineries (Swaminathan 1995, 2001) and audit firms (Boone et al. 2000). In
such setting, where peaked spaces constitute attractive places for reaping scale
economies, it has been observed that specialist organizations, those that serve
a narrow niche (a small set of taste preferences), proliferate as market con-
centration rises. It has also been argued that specialists proliferate not only
due to the lack of capabilities of generalist firms to reach the extremes of
the resource space, but also due to the ability of specialists to exploit both
unused peripheral resources as well as the importance of customer identity
and self-expression in such marginal niches. Carroll and Hannan (1995) argue
that mature markets sometimes tend to reflect the flattening of the resource
space, as a by-product of the ability of specialist organizations to open up new
niches (Swaminathan 1998). This implies a co-evolutionary process in which
firms compete, take advantage of scale economies, grow large and consolidate
by targeting the best spots in the resource space, while consumers refine their
tastes by moving towards the firm that best matches their preference: large-
scale firms might find it costly to cover the whole space and many consumers
might find it more attractive to be served by specialized firms at the periphery.

An aspect that may well be critical here is the extent of consumer mobil-
ity. Consumer search models have been extensively studied (see for instance,
Stahl 1989) in the Industrial Organization tradition, and the effects of search
and switching on industry performance have been clearly acknowledged (Wa-
terson 2003). For instance, price competition in a single-product oligopoly or
perfect contestability context is known to be extremely tough if consumers
are perfectly mobile. Only then, after all, do clients move from one firm to
the other if the latter offers a price that is lower than the former’s even when
this difference is infinitely small only.

Following the role that computational and mathematical modeling has
played in studying such industry evolution processes in Organizational Ecol-
ogy (Lomi and Larsen 1996, 1998; Péli and Nooteboom 1999; Barron 1999,
2001; Harrison, 2004; Lomi et al 2005) we explore the firm-consumer dual
dynamics in an agent-based model under a set of specific conditions: a peaked
resource space with heterogeneous consumer preferences, and a changing set
of large-scale and small-scale firms. Our key contribution is that we analyze
the impact of different degrees of consumer mobility on market structure evo-
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lution. Following ecological theories, we formulate our model with exogenous
entry and endogenous exit, but the novelty of our representation is that we
add a reciprocal interplay between firms and consumers (Lewin et al. 2004) as
a driver of market structure evolution to the traditional ecological view where
markets are mainly considered to be shaped by entry and exit rates of firms
(Hannan and Freeman 1989; Carroll and Hannan 2000).

7.3 Summary of the Model

Next, we introduce an agent-based model with an initial peaked demand dis-
tribution, scale economies and consumer taste heterogeneity. Demand is taken
to be distributed along 100 different taste preferences using a Beta distrib-
ution with parameters α = β = 3. Firms are of two types (large-scale and
small-scale), enter the market at some taste position and gradually move to-
wards the most abundant spots (e.g. the “peak” or market center) as they
grow. Consumers update their taste preferences according to either the clos-
est match according to their current taste or the highest expected utility.

7.3.1 Firm Behavior

The model starts with one single firm. Firm entry to the market is drawn from
a negative binomial distribution, which depends on a density-dependent rate
(Harrison 2004)3. Such density-dependent mechanism is consistent with em-
pirical findings regarding organizational founding (Hannan and Carroll 1992;
Barron 1999): we consider a process with an arrival rate represented by λ(t)
= exp[δ0 + δ1N(t) + δ2N(t)2], where N(t) is firm density at time t, with t=
1,2,. . . ,T. Parameter values for δ0, δ1 and δ2 are calibrated in the same fash-
ion as done in previous density-dependence models (see for instance, Harrison
2004). In addition, there is a distribution algorithm of entrants over the one-
dimensional resource space based on two facts: a) the probability of founding
a large scale is 1 at N = 0, and, b) such probability is a monotonic decreas-
ing function of the total industry output: as the industry output approaches
the market’s carrying capacity4, the probability of founding a large-scale firm
decreases (see Carroll and Hannan 1995). Consequently, the probability of
founding a small-scale firm is just the complement.

The cost function of a firm has two components, one related to production
cost, and the other one related to niche-width costs. Thus, for firm i at time
t, total costs at time t are represented by the production costs, Ci

P (t), and
niche-width related costs Ci

NW (t):

3 Hereafter, following the Organizational Ecology tradition, we define density as
the number of firms in the market.

4 In Organizational Ecology, carrying capacity is defined as the maximum number
of firms (i.e., maximum density N) that can operate viably in the market.
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Ci(t) = Ci
P (t) + Ci

NW (t) (7.1)

The production function corresponds to a classic Cobb-Douglas func-
tion with two production factors: a quantity-independent (fixed) one and a
quantity-dependent (variable) one. Values of the Cobb-Douglas function were
chosen assuming that the long-run average cost curve is downward sloping
(in order to reflect scale economies) and with a minimum (normalized) value
of 1. Niche-width related costs appear as firm expands horizontally along the
taste preference axis, and reflect the complexity (i.e. “scope” diseconomies) of
handling a large number of different taste preferences. We refer to “niche” as
the set of taste positions where the firm sells product. Each niche has a center
that is updated as the firm moves. A firm moves in the direction in which
“resources” are more abundant, so they can benefit from reaping scale effects
and reducing prices. We define wu

i (t), wu
i (t) as the upper and lower niche

limits of firm i, and NWC as the niche-width cost coefficient. The niche-width
costs are:

Ci
NW (t) = NWC ∗ (wu

i (t) − wl
i(t) (7.2)

7.3.2 Consumer Behavior

Consumers are distributed according to a unimodal one-dimensional resource
space with a market center. As mentioned above, demand is distributed among
n taste positions (n=100). Each consumer buys only one product each time
period. Each taste position k is characterized by a number of consumers bk.
Consumer j at taste position k has a utility function defined by:

Uj,k(i, t) = Bj(i, t) − Pi(t); j = 1, 2, ..., bk; k = 1, 2, ..., n (7.3)

The term Bj(i,t) is the “benefit” consumer j receives (e.g. product func-
tionality) at time t, and Pi(t) is the price she or he pays to firm i. We as-
sume that the benefit for acquiring a product decreases with taste distance
(Hotelling 1929). We define Bj(i,t) as:

Bj(i, t) = Bo − [γ
‖pi(t) − k‖

n
+ εij ] (7.4)

The term Bo is a constant, pi(t) is firm i’s niche center, ||pi(t)-k|| is the
distance between the firm’s niche center an the taste position, γ is constant
and εij an error term that represents the inability of consumer j to exactly
evaluate “product dissimilarity” respect to her or his own taste. The term εij

is assumed to be normally distributed with mean = 0 and standard deviation
= 0.05. When buying, each consumer at position k maximizes her or his utility
according to a utility participation constrain Uo. Uo is set up as a markup
(20%) on the maximum value of the long-run average cost curve.
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7.3.3 Model Dynamics

Prices are initially set up by estimating the expected additional quantity firms
will obtain in the next time period. Let us consider a firm (e.g. firm i) that
enter the market at an empty slot k at time t. Let us define Qi(t) as the
quantity firm i expects to get, Ui(t) as the utility that firm i offers to consumers
at position k, bk. Then,

Qi(t) = bkP (Ui(t) > Uo) (7.5)

If firm i enters an occupied slot, the entrant follows exactly the same
procedure, except that the calculation of Qi includes information from the Nk

competing firms already offering product at that taste position:

Qi(t) = bkP (Ui(t) > Uo)

Nk∏
j=1

P (Ui(t) > Uj(t − 1)) (7.6)

After competition, niche limits wl
i(t) and wu

i (t) are adjusted accordingly
depending on lost or gained taste positions. Firms also update their niche cen-
ter pi(t). Firms engage in both vertical and horizontal expansion. Expansion
is assumed to be dependent on expected incremental consumer target and an
expansion probability. Firms start with a price that depends on others’ prices,
but update its level to a markup price depending on future scale economies
gains. The markup reflects the opportunity cost for a firm in the industry.
Firm stay in the market as long as they have non-negative profits. As men-
tioned above, firms are of two types: large-scale and small-scale. A large-scale
firm is calibrated so that it catches between 1/2 and 2/3 parts of the whole
resource space in the absence of competition. For this aim, the values of the
coefficients for NWC, γ and the Cobb-Douglas parameters are jointly cali-
brated (NWC = 200, γ = 10). In addition, small-scale firms are calibrated at
a lower point in the long-run average cost curve, in order to reflect lower scale
advantages vis-à-vis large-scale firms. For small-scale firms, a set of different
values for the Cobb-Douglas function is used in the simulation trials. For con-
venience, we assume that positions never disappear for lack of demand due
to the mobility process. That is, taste positions always have some demand to
offer. So, both total demand and the total number of positions remain con-
stant throughout the simulation experiments. We assume that the minimum
demand a taste position has is one consumer.

7.4 Simulation Experiments and Results

Each simulation was run for T = 400 time periods. Simulation trials were run
for two different values for the firm expansion probability, which were taken
from the approximate extremes of its calibrated value range (high = 0.15
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and low = 0.05). Accordingly, we experimented with three different values of
long-run average cost curve points, denoting three different cost curves for
the small-scale firms, the two rather extreme values of the calibrated range
and a middle one (low = 5, moderate = 10 and high = 20). Therefore, the
total number of parameter combinations is six. Each combination was run five
times and the results were averaged. We performed 6x5 = 30 simulation runs
for each experiment. We run three different experiments, which are explained
below, for a total of 90 simulation runs.

7.4.1 Baseline Model (Without Consumer Mobility)

As our baseline, we assume that the resource space shape remains constant
over time. That is, consumers are not mobile at all. Results show increas-
ing concentration (C4concentration ratio) coupled with an initially increas-
ing and later a declining density. Few large-scale firms take over the market
center while small-scale firms move to the peripheral areas. This somehow
reflects a market partitioning similar to that found in Organizational Ecol-
ogy’s resource-partitioning theory (Carroll 1985; Carroll et al. 2002), although
overall density declines after reaching a peak, which does not follow from the
theory’s original prediction. According to the results presented in Fig. 7.1
(dashed lines represent sample runs and solid lines represent average behav-
ior), we observed that the organizational density, on average, tends to slightly
decline below 150 firms. Market concentration shows an increasing trend with
a value above 70 per cent after the 400 time periods.

7.4.2 Consumer Mobility According to Closest Matched Taste

Next, we assume that consumers move into the direction where they expect
to find firms that match closer with their current taste. In this case, the
mobility decision does not involve prices, although consumers use Eqs. 7.3
and 7.4 to assess the best option when purchasing. Empirical evidence in
the U.S. brewery and wine industry show that consumer might be inclined
to move to peripheral taste preferences heavily based on identity reasons,
no matter whether or not premium prices appear (Carroll and Swaminathan
2000; Swaminathan 2001). Consumers inspect adjacent taste positions (one
to the left, one to the right) and move to the position where a closest-to-own-
taste product is offered (i.e. the offering where the shortest distance between
the firm’s niche center and the current consumer’s taste is found), according
to a constant mobility rate of θ per time period (θ=5%) per taste position5.

5 Alternatively, we could have used a mobility probability (per consumer), consis-
tent with the consumer agent’s buying process, instead of a mobility rate per taste
position. There are two reasons for not doing so: first, the mobility process might
belong to some aggregate level that should not be modeled at the individual level
without a rather developed set of consumer interactions (e.g., network externali-
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Fig. 7.1. Consumer immobility

Results reveal that the scale effect of large-scale firms does not diminish
with consumer mobility, since the average trend of market concentration (C4

ratio) is still associated with an increasing trend to a level above 70 per cent
at the end of the simulation horizon. However, the mobility process seems
to affect the way firms proliferate, since density tends to stabilize at a point
around 200 firms, well above the level in the case without consumer mobility.
Taking into account that simulated data reveals a very low number of large-
scale firms at time = 400, this result reflects a positive effect on small-scale
firms’ proliferation. This pattern of results is reproduced in Fig. 7.2.

7.4.3 Consumer Mobility According to Highest Expected Utility

We assume now that consumers move into the direction of higher utility spots.
This is, consumers inspect others’ utility offerings in adjacent taste positions
and decide to move according to a constant mobility rate θ per time period
(θ=5%) per taste position. Unlike the previous experiments, in some cases
market now evolves toward a fragmented structure, reflecting rather low levels
of concentration. This is clear from Fig. 7.3.

ties), which is beyond the scope of this work. Second, a mobility probability will
imply a higher computing intensity, which is an unnecessary complication not
needed to derive the results we want to report here.
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Fig. 7.2. Match-improving consumer mobility

In any case, concentration does not show an increasing trend and falls well
below the level observed in the two previous experiments, revealing that the
large-scale firms’ advantage is weakened. It is worth noticing that, for the cases
with low market concentration, the market is divided among rather similar
and small firms (fragmentation). This case reflects that the proliferation of
small-scale firms is due in part to the fracture of scale advantages, since the
dominance of large-scale firms might be lost.

7.4.4 Effects on Large-Scale Firms Space

Organizational ecologists have argued that, in resource-partitioning processes,
the total space own by generalist organizations decreases as concentration rises
(Carroll and Hannan 2000; Carroll et al. 2002). We now investigate the effects
on space contraction of large-scale firms under our three consumer mobil-
ity scenarios. We define the large-scale firms’ total space as the aggregated
number of taste positions that such firms serve.

In absence of consumer mobility (experiment 1), it appears that whether
or not the large-scale firms’ space gets reduced depends on the value of the
capacity of expansion of the small-scale firms. Our interpretation is that, as
such capacity increases, the more likely it becomes that such small-scale firms
appropriate space from large-scale firms, since the former are in better position
to make more attractive offerings to peripheral consumers. However, results
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Fig. 7.3. Utility-maximizing consumer mobility

from experiments 2 and 3 reveal that consumer mobility helps to reinforce
such space contraction. The average large-scale firms’ space clearly contracts
over time, as can be seen from Fig. 7.4.

7.5 Conclusion

It has been shown how firm-consumer dual dynamics might greatly affect
the evolution of market structures. The key finding is that consumer mo-
bility might diminish the power of scale effects. Industry evolution theories
still focus heavily on the supply side, without incorporating consumer effects
and firm-buyer dynamics. The presented results differ from Harrington and
Chang’s (2005), since they argue that firm-consumer dual dynamics might lead
to market dominance. However, the context and assumptions of both models
differ greatly (Harrington and Chang’s model is about two firms adapting
and searching for innovations to match consumers’ attributes in absence of
price mechanisms). In addition, further research along these lines may try
to explain the flattening of the resource space, as argued by organizational
ecologists. First, it is shown under an agent-based framework that small-scale
firms may enhance their proliferation in a market dominated by large-scale
firms if the former properly exploit identity-related tastes. Second, consumer
mobility can also weaken scale advantages, and further stimulate small-scale
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Fig. 7.4. Large-scale firms’ total space for experiments 1 (left), 2 (center) and 3
(right)

firm proliferation. As seen in the first experiment, scale economies might not
be enough to explain resource-partitioning’s resource-release effects, and some
form of consumer mobility would be needed to explain it fully. This suggests,
again, that the “supply-side” resource release outcome might need a comple-
mentary “demand-side” consumer mobility explanation.
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[25] Péli G, Nooteboom B (1999) Market partitioning and the geometry of
the resource space. American Journal of Sociology (104): 1132-1153

[26] Stahl D (1989) Oligopolistic pricing with sequential search costs. Amer-
ican Economic Review 79(4): 700-712

[27] Swaminathan A (1995) The proliferation of specialists organizations in
the American wine industry, 1941-1990. Administrative Science Quar-
terly 40: 653-680

[28] Swaminathan A (1998) Entry into new market segments in mature in-
dustries: endogenous and exogenous segmentation in the U.S. brewing
industry. Strategic Management Journal 19: 389-404

[29] Swaminathan A (2001) Resource partitioning and the evolution of spe-
cialists organizations: the role of location and identity in the U.S. wine
industry. Academy of Management Journal 44(6): 1169-1185

[30] Waterson M (2003) The role of consumers in competition and competi-
tion policy. International Journal of Industrial Organization 21: 129-150

[31] Witteloostuijn A van, Boone C (2006) A resource-based theory of mar-
ket structure and organizational form. Academy of Management Review
31(2): 409-426



8

E-Consumers’ Search and Emerging Structure
of Web-Sites Coalitions

Jacques Laye1, Maximilien Laye2, Charis Lina3, and Hervé Tanguy2

1 LEF Inra Sae2/Engref, Nancy, France, laye@nancy-engref.inra.fr
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Summary. This article summarizes the main results we obtained in an agent-based
extension of an industrial organization analytical model4 for studying emerging coali-
tion structures in electronic markets.

8.1 Introduction

As Axtell (2000) points out, “an agent-based computational model is valu-
able to study the non-equilibrium dynamics, in which structure is perpetually
born, growing and perishing”, which is the case of the constantly evolving
Internet landscape. We develop an agent-based simulation model in order to
study the forces that drive the Web-sites aggregation phenomena, following
the principles described in the related literature (see for instance the work of
d’Inverno et al. (1997), Wooldridge et al. (2000), and Kinny (1999, 2001)).
We study a virtual environment consisting of Internet consumers, online sell-
ers (i.e. B-to-C Web-sites) and rules of interaction among these economic
agents. Most of the agent-based approaches that focus on the Internet econ-
omy consider that the most important factor of the evolution of the Internet
landscape are network effects and increasing returns, see for instance Lina
(2003). Our approach differs from these contributions in two ways. Firstly, our
analysis does not take into consideration these characteristics of the Internet
landscape (information feedback effects, sites’ underlying network, presence of
Web-communities, etc.). In other words, the Web here is an alternative channel
of distribution and not an entertainment good. We focus on the aggregation
strategy of pure merchant sites (coalitions), trying to capture consumers only
willing to buy online by reducing their search cost. The reduction of search
costs is considered to be the result of the coordinated efforts of the coalesced
sites to develop more efficient search tools in order to facilitate the finding of
the goods closest to the tastes of Internet consumers (mutual electronic link-
age among sites or through the development of specialized search engines).

4 Laye (2003), Laye and Tanguy (2005).
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This defines the notion of coalition we are interested in: reduction of search
cost as a possibility to increase the expected demand rather than price coor-
dination or merging. We base our multi-agent model over a theoretical one
(fully presented in Laye (2003) and Laye and Tanguy (2005)) that is related to
the literature of Industrial Organization, which allows us to take into account
economic behaviors (agents are maximizing their utility) rather than pure be-
havioral rules. Agents, mimicking the behavior of Web sites and consumers,
interact through two basic processes: the consumers’ search process and the
coalition formation process. Extending the analytical model by introducing
dynamics and heterogeneity on the agents’ characteristics and behavior en-
ables us to study more systematically the emergent coalition structures in a
more complex, and thus more realistic, environment. The agent-based model
incorporates a dynamic process of coalition formation where coalitions can be
formed in parallel. Contrary to the analytical model, the number of sites and
consumers in the simulated market grows over time. A process of market en-
try/exit is also added. Moreover, sites have the ability to dynamically adjust
their price. In various configurations of the agent-based model, we look at the
economical results in terms of (i) degree of differentiation of the coalesced
sites , (ii) the number and size of the formed coalitions.

8.2 An Example of Search Within Coalitions

Let us describe the search procedure of a traveler willing to book online in
a 5-star hotel in Paris for a conference. 5-stars hotels are mainly located in
a few neighborhoods of Paris (Champs-Elysées, Opéra, etc.) that will be the
criterion of differentiation for the traveler (which one is closer to the confer-
ence center?). The traveler anticipates a 5-star hotel to cost 300 Euros, but
discovering a lower price could be a motivation to accept a more distant ho-
tel, if the difference in price counterbalances the adaptation cost. By typing
a request in a search engine (such as google.com) a great number of sites are
found, leading to a loss of time and energy (search cost) in order to get the in-
formation about price and location of one hotel. If the hotel is “close enough”
to the consumer’s preference, the transaction can take place, otherwise it is
preferable to perform a new search, depending on the characteristics of the
current hotel, on the priors about future hotels to discover, and on the search
cost. The traveler gets sites of hotels (Le Crillon, Ritz, etc.), but also portal
sites (“coalitions”) that reduce the search cost of the consumer thanks to spe-
cialized search engines: by sorting the results of the site by stars, it is possible
to directly find with a lower search cost many 5-star hotels (2 in parishotel-
reservation.com, 4 in paris.book-online.org, 5 in hotel-paris-tobook.com and
hotelclub.org, 6 in 0800paris-hotels.com). In such a site, hotels increase the
probability of being visited, thereby increasing the expected demand, but they
remain independent in their price policy. We empirically observe that inside a
coalition hotels belong to different neighborhoods. For instance in 0800paris-
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hotels.com, the 6 luxury hotels proposed by the site are located in 6 different
districts of Paris. Our goal is to find the rationale behind the choice of a highly
differentiated partner rather than another coalition structure.

8.3 Analytical Model

As in the model of Bakos (1997), we consider a circular model of spatial
differentiation that represents both the characteristics of the differentiated
goods offered by Web-sites and the tastes of consumers. More precisely, we
consider a market with a continuum of Internet consumers and m B-to-C sites.
m is supposed to be common knowledge. Each site j sells a unique good at
price pj and the characteristics xj of the goods are differentiated along the
unit circle. The tastes xi of the consumers are heterogeneous and uniformly
distributed along the same circle. By buying a unit of good that does not
match exactly with their preference, consumers incur an adaptation cost t per
unit of distance (t > 0) between their location (i.e. their preferred product)
and the location on the circle (i.e. the good offered) of the site chosen for the
transaction. Therefore, the utility function if consumer i buys a unit offered
by site j is: U(i, j) = r − pj − t|xi − xj |, where r is the reservation utility of
each consumer.

Consumers’ Search Procedure

As in Gabszewicz and Garela (1986) or Bakos (1997), we suppose that sites
compete in price and that the population of consumers is imperfectly in-
formed. Consumer i acquires information on the location and the price of
one of the m sites of the electronic market by incurring a constant search
cost c > 0. We consider this search cost to be both the cost associated with
the discovery of the site on the Web, for example through a search engine,
and the cost of visiting the site to find out about its characteristics: sell
price S, and distance D. The utility of the consumer in case of a transac-
tion is U(S, D) = r − S − tD. If the consumer decides to search further
and finds another site located at distance x and with price p, the utility is
U(p, x) = r−p−tx. Thus, U(x, p)−U(S, D))+ = (S+tD−xt−p)+ represents
the increase of utility for the consumer if U(x, p)− U(S, D) > 0 (otherwise it
is 0). We suppose that the consumers are risk neutral. The calculation of the
expected gain in utility based on the priors on the distributions of sites’ loca-
tions and prices allows the consumer to decide on the opportunity to continue
the search procedure.

Consumers’ Priors

Concerning the priors on prices, the consumers believe that at equilibrium
all sites choose the same price p∗. More precisely, the distribution of prices
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is such that f(p) = 1 if p = p∗, and f(p) = 0 otherwise. Concerning the
priors on locations, consumers believe that sites locate according to a uniform
distribution over the unit circle. We also suppose that consumers find sites
according to a random trial with replacement. These assumptions are related
to the fact that consumers are considered to not change their priors on the
distributions of locations or prices after finding each site.

Stopping Rule

The expected gain in utility obtained in this case is: g(S, D) =
∫ 1

x=0
(
∫
�(S +

tD − xt − p)+f(p)dp)dx. Given the priors on the locations, we find like in
Bakos (1997) that g(S, D) = (S + tD−p∗)2/t. Next, consumers compare their
expected gain in utility with the search cost c. If g(S, D) > c, a consumer
will prefer to continue the search. If g(S, D) < c, a consumer will choose to
buy a unit of the good located at a distance D and at price S. At equilibrium
with rational expectations for the consumers, S = p∗. For each consumer i
located in xi, we have that g(p∗, D) < c on the interval [xi −L, xi +L], where
L =

√
c/t. Consequently, if the consumer discovers a site at a distance smaller

than L, the transaction will take place. Symmetrically, from the point of view
of a site, the more distant potential client is located at distance L. We obtain
an interval of length 2L around any site, which will be referred to as “natural
territory”. The natural territory of a site corresponds to the interval around
its location in which consumers stop their search and buy from this site if
they find it.

Coalitions

Next, we consider that sites have the possibility of forming coalitions and
that this leads to a reduction of the search cost for a consumer that visits
a site within a coalition. A consumer that has only incurred the search cost
c for a search on the entire Web can visit other sites by incurring a lower
cost c′ < c within the coalition. We consider that there are 4 sites located
according to the principle of maximum differentiation and selling at price p∗,
which is also the price anticipated by the consumers. We restrict the study in
terms of length of natural territories by supposing that L < L < L such that
no consumer is priced out of the market and the natural territory of a site
only intersects with those of its neighbors. This setting is the minimal setting
required to differentiate coalition structures. Indeed, a site willing to coalesce
can choose two kind of partners defining two different categories of coalitions.
A coalition will be called “connex” if the natural territories of its members
intersect, otherwise the coalition will be called “non-connex”. As shown in
Figure 8.1, for L < L < L, a coalition is connex if its members are located
consecutively on the circle (little differentiation between sites 1 and 2), and
non-connex otherwise (high differentiation between sites 1 and 3).
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Fig. 8.1. Connex and non-connex coalition structures

Results of the Analytical Model

Two main questions motivate this analytical model: absent price coordination,
what is the economic rationale behind the coalition formation of specialized
B-to-C Web-sites and what is the more preferable type of coalition: those
involving sites selling little differentiated products (connex) or highly differ-
entiated ones (non-connex)? As it is extensively described in Laye (2003) and
Laye and Tanguy (2005), the static comparative of the two coalition struc-
tures shows that a site willing to coalesce has more incentives to choose a
non-connex partner. It is shown that for both coalition structures (connex
and non-connex), coalesced sites have an incentive to lower their prices from
the price obtained without coalitions in order to increase their natural ter-
ritory. The opposite tendency is observed for the non-coalesced sites: they
increase their price in order to decrease the length of this territory. Further-
more, the non-connex coalition is more aggressive than the connex one. The
fact that non-connex partners decrease more their prices than if they were in
a connex coalition shows that it is not the increase in the competition between
the coalesced sites that drives the price decrease. Decreasing the price reflects
only the opportunity to gain market share from the non-coalesced sites. Given
that the existence of search costs that are independent from the adaptation
costs is a specific characteristic of Internet distribution, this analytical model
can enlighten the discussions on the emerging structures of B-to-C coalitions,
as part of the evolving Internet landscape. However, we are interested in the
way in which more complex dynamics on the population of agents (sites and
consumers) and on the coalition formation can influence the mechanisms cap-
tured by the analytical model, which is a motivation for the agent-based model
presented in the next sections.
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8.4 Agent-Based Model

Initial Conditions

n0 sites are located according to the principle of maximal differentiation. m0

consumers are uniformly distributed along the circle.

Market Entry and Exit

We assume that each site incurs an initial cost in order to enter the market.
The goal of each site is to repay this initial debt to the bank as well as the
interest. If after a given number of time steps the site is not able to fully repay
its current debt to the bank, the site is forced to exit the market. If a site that
belongs to a coalition dies the coalition’s size is reduced by one.

Agents’ Growth Rates and Localization

We assume that the number of consumers and the number of sites grow ex-
ponentially with time at rates gc and gs respectively. Therefore at time step
t the number of consumers is m(t) = (1 + gc)

tm0 and the number of sites
is n(t) = (1 + gs)

tn0. New sites and consumers are located as the initial
populations.

Coalition Formation Process

Every Tc time steps single sites and/or coalesced sites are randomly activated
to engage in a new coalition formation process. If the site is single, then it
becomes a coalition initiator by randomly selecting a partner. If the selected
partner is single as well, they form a new coalition of size 2. Otherwise, the
initiator joins the existing coalition, thereby increasing its size by one. If the
initiator already belongs to a coalition, then it randomly selects a single part-
ner in order to expand its coalition by one member. In our model, we do not
allow the merging of two existing coalitions. Once a new coalition is formed,
it is tested in the market for the next Tc time steps. At the end of the test
period, each member of the new coalition compares the sum of its individual
profits over the last Tc time steps with the equivalent sum in the previous
Tc time steps (whether they belonged to a coalition or not). If profits have
increased for each site of the new coalition then we consider that the criterion
of individual satisfaction is satisfied (the coalition is considered profitable for
all participants) and the coalition is permanently adopted. Otherwise, the last
member added in the coalition is not accepted. Sites that have been rejected
by a given coalition will not be candidates for acceptance by the same coalition
ever again in the course of the simulation.
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Consumers’ Search Process

In each time step consumers are randomly activated to undertake a new search
process that may result in the purchase of one product unit, following the
behavior described in the theoretical model.

RND and DFA Price Adjustment Procedure

In the RND algorithm (random algorithm), at each time step, each site read-
justs its price after comparing the sum of profits that it had during the last
TP steps with the one of the previous TP steps. If there has been an increase
in profits, the site makes a price adjustment by increasing or decreasing the
price by an amount selected randomly in [δpmin, δpmax] (uniformly), other-
wise the site readopts the price it had before the last price adjustment. In
the DFA (Derivative Following Algorithm, see Kephart et al. (1998)), each
site makes its first price adjustment randomly. If after TP steps, the sites finds
that its profits have increased, it keeps moving the price in the same direction,
otherwise it reverses direction.

Consumers’ Expertise and Reduction of Search Cost

Consumers improve with time their ability to search and find products on the
Web, so we consider that the search cost of the consumers decreases linearly
with time.

8.5 Simulations Results

8.5.1 Simulation plan

The first step of the simulation plan consists of keeping the symmetry as-
sumptions that have been used in the analytical model in order to study the
impact of the coalition formation procedure on the market structure. In this
context, we analyze the role of the structural parameters of the model (i.e.
adaptation cost and search cost) on the results. Next, we explore the effect of
the market entry and exit processes (for sites and consumers) on the market
structure. More precisely, we are interested in identifying those forces that are
capable of creating aggregation in our simulated market. We define aggrega-
tion depending on the proportion of coalitions of each size. A market structure
in with many big coalitions is considered to be dispersed, which results in an
oligopolistic market. A market structure in which there is only a small number
of big coalitions while the rest of the sites are either single or participate in
small coalitions is considered to be concentrated.
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8.5.2 Scenario 1

Reference simulation. We start by a generalization of the analytical model to
20 sites and where only the natural territories of consecutive sites intersect (in
this case connexity corresponds to consecutive locations on the circle). There
are 1000 homogeneous consumers (same search cost c = 1, same adaptation
cost t = 1000 and reservation utility R = 10000, symmetric locations). The 20
sites are symmetric (same price, symmetric locations), and inside a coalition
the search cost of the consumers is c′ = 0. All sites are located according to the
principle of maximum differentiation, whereas the consumers expect the dis-
tribution of sites’ locations to be uniform. All sites set the same price p∗ = 10,
which is the price anticipated by consumers. The length of the corresponding
natural territory is 2

√
c/t = 0.063. We test two different coalition formation

procedures: (i) a unique site is activated as initiator of a single coalition that
grows throughout the simulation, and (ii) all sites can be activated and are
able to form coalitions in parallel.

Results of Scenario 1

(i) In typical runs where only one coalition is allowed to grow, the single
coalition formation lead to a coalition of size 5. (ii) Figure 8.2 shows a typical
result of a simulation for the same parameters but allowing the formation of
multiple coalitions with different initiators. For presentation reasons, instead
of drawing all the coalitions on the same circle, coalitions are grouped by size.
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Fig. 8.2. A typical result for scenario 1

In this simulation, the multiple coalition formation led to the emergence
of 5 coalitions (1 of size 2, 1 of size 3, 1 of size 4 and 2 of size 5). As we
can see, the coalitions grew in general by adding a non-connex member each
time. The only way to obtain a “connex component” (two members of the
coalition are connex, like for the coalition of size 3) is that the coalition starts
by two connex partners. This first result confirms the theoretical result in
terms of coalition structure: non-connex partners are preferred when forming
a coalition.
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Random Effect and Coalitions’ Size

In addition to this, we see that the maximum size of a coalition is 5, which
is much smaller than what could be expected (a single coalition of size
10) by extending the result of the theoretical model (non-connex partners
are preferable to connex ones). This is due to the fact that the number
of consumers inside the natural territory of any site is very small, only
n.2

√
c/t = 1000 ∗ 0.063 = 63 consumers. As a result, the intersection of

natural territories contains 1000 ∗ 0.013 = 13 consumers. Without coalitions,
consecutive sites would share equally these 13 consumers. A coalition of size
2 with a non-connex site increases the probability to obtain these consumers
from 1/2 to 2/3. This amounts to 8 consumers on expectation instead of 6.
However, for larger coalitions, for example when the coalition size passes from
size 5 to 6, the expected amount of consumers is (6/7 − 5/6) ∗ 13 = 1.53. In
other words, due to the combined effect of the number of consumers on the
market (discrete distribution, instead of continuous distribution as in the the-
oretical model) and the length of natural territories, the advantage of being
coalesced may not appear. This phenomenon will be referred to as random
effect.

Competition Among Coalitions and Coalitions’ Size

Added to this random effect, the marginal increase in profits to the last en-
trant in a coalition decreases with the size of the coalition. In a typical run,
the average profit increased by 24% when the initiator found another single
site to coalesce with, but as new sites were being added to the coalition the
average profit increase became smaller (4%). In the case of multiple coalition
formation (Figure 8.2), the maximum coalition size obtained was also 5. In
the multiple coalition formation case, another phenomenon can have impact
on the stopping of the growth of a coalition: the “competition” among exist-
ing coalitions for new highly differentiated members. As the coalitions grow
in size, there are fewer highly differentiated sites that could be accepted by
these coalitions. The importance of this result lies in the fact that a discrete
distribution of consumer preferences is a more realistic setting than the con-
tinuum considered in the theoretical model. The outcome of the theoretical
model according to which it is always profitable to coalesce has to be recon-
sidered since the way in which the number of consumers interacts with the
values of the search cost and adaptation cost (that define natural territories)
influences dramatically the size of the coalitions. As a result we can say that
the coalition growth stops before it reaches the size of the maximum possible
non-connex coalition.

8.5.3 Scenario 2 - Impact of Structural Parameters

The analysis of the impact of the parameters of the model reveals that only
the values of search cost and adaptation cost have a major impact on the
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emerging coalition structures. Until now we studied the extreme case of nat-
ural territories intersecting only for consecutive neighbors. We present now
the typical results from an experiment in which the values of the parameters
are such that the natural territory of each site is so large that it almost covers
the whole circle. All parameters are the same than in scenario 1, except for
the adaptation cost t = 5 instead of 1000. The length of the sites’ natural
territory in this case is 2

√
c/t = 0.89.
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Fig. 8.3. A typical result for scenario 2

Results of Scenario 2

(i) In typical runs of simulations where only one coalition is allowed to grow,
the process stopped at size 2. As we could expect, since there are less non-
connex potential partners, the size of the coalition is smaller than in scenario
1. (ii) Figure 8.3 shows a typical result of a simulation allowing the formation
of multiple coalitions with different initiators. We also see that only coalitions
of small size emerged, consisting of 2-3 members (5 coalitions of size 2 and
3 coalitions of size 3). Given that there is extended overlapping among the
natural territories in this experiment, one would expect that there would be
no coalitions of size greater than 2, just like in the case of a single coalition,
since only diametrically opposed sites have territories that do not intersect.
Let us analyze the presence of “connex components” in some coalitions (the
third site of a coalition being in this scenario always connex with the other
two).

Existence of Connex Components

As we just mentioned, we observe that connex partners are accepted in coali-
tions. This phenomenon, which is impossible in the case of a single coalition, is
made possible due to the dynamic process of multiple coalition formation. In
order to explain it we analyze the chronology of the formation of the coalition
(3,13,8) of Figure 8.3: sites 3 and 13, which are non-connex, formed a coalition
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of size 2. This allows site 3, for example, to attract more consumers on ex-
pectation over those that belong to the intersection of territories with connex
sites that are not yet coalesced. Next, coalitions (2,16) and (5,18) formed. Site
3 is now surrounded by two connex neighbors that participate in coalitions
of size 2. Therefore, the advantage of being coalesced for site 3 is diminished:
the probability to obtain consumers belonging to the intersections of natural
territories of sites 2, 3 and 5 is now identical for these three sites. Afterwards,
site 8 enters coalition (3,13). Thus, we obtain a coalition of size 3 (3, 13, 8)
with 2 connex components (13,8) and (3,8). Even though site 8 is connex with
site 3, the participation of site 8 in the coalition is beneficial for site 3 which
can now attract more consumers than sites 2 and 5. As a result we can say
that although non-connex partners are always preferable for coalescing with,
the dynamic process of multiple coalition formation allows the emergence of
coalitions containing connex components as a reply to the competition from
existing coalitions in the market.

8.5.4 Scenario 3 - Population Growth and Market Exit

We will now study scenarios where the populations of users and sites grow
over time with exponential rate. There are 1000 consumers in the market, and
this population will grow to 5000. The population of sites will grow from 20
to 100 sites. The values of the consumers’ adaptation and search cost are such
that the natural territories of each pair of consecutive sites that belong to the
initial population of sites intersect. Concerning the locations of the new sites
and users they follow the principal of maximal differentiation. The rest of the
parameters and assumptions are the same as those of scenario 1.

Results of Scenario 3 (Constant Ratio of Consumers/Sites, No
Market Entry/Exit)

In order to have a reference, we present first the results of an experiment
where there is no exit process and the numbers of sites and users grow at
exponential rate. In a typical run, 16 coalitions were formed: 1 of size 2, 2
of size 3, 2 of size 4, 4 of size 5, 6 of size 6 and 1 of size 7. Coalitions of
final size from 5 to 7 were formed in the beginning of the simulation, whereas
the majority of smaller size coalitions were formed in relatively late stages of
the run. The first interesting phenomenon is that coalitions often surpass in
size the maximum size found in the experiment of scenario 1 (no populations’
growth). This is due to the fact that: (1) the growth of consumers reduces the
random effect described earlier, thus allowing a coalition to grow more towards
the size of the maximum non-connex coalition (size 10), and (2) the growth
of sites changes the structure of the market in terms of natural territories,
making that more sites are connex. Therefore, connex components are now
likely to appear increasing the size of a coalition. As a result we can say that
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the agents’ growth allows the coalitions to grow more through the reduction
of the random effect (consumers’ growth) and the possibility to accept connex
components (sites’ growth).

Results of Scenario 3 (Constant Ratio of Consumers/Sites, Market
Entry/Exit)

Next, we show the results when sites incur an initial cost to enter the market
and exit the market if they cannot repay it in a given period of time. The
related parameters are the following: entry cost=3600, time to repay=8 time
steps, interest rate=5%. In this experiment, 8 coalitions formed: 1 of size 2, 1
of size 3, 1 of size 4, 2 of size 5, 2 of size 6 and 1 of size 8. We can observe the
coexistence of a high number of large size coalitions (5 coalitions of size more
than 5). In this case, the market structure goes towards duopoly or monopoly
structures.

Results of scenario 3 (Increasing Ratio of Consumers/Sites,
Market Entry/Exit)

In this experiment 16 coalitions are formed (which is the double than what
was obtained with constant consumers/sites ratio): 3 of size 2, 2 of size 3, 2 of
size 4, 2 of size 5, 4 of size 6 and 3 of size 7. There is a significant number of
big size coalitions (size 5-7). 7 of these coalitions have a size greater than 6. As
a result we can say that an increasing ratio of consumers to sites encourages
the emergence of dispersion in the market resulting in an oligopoly of big
coalitions.

Results of Scenario 3 (Decreasing Ratio of Consumers/Sites,
Market Entry/Exit)

In this experiment 22 coalitions are formed: 13 of size 2, 7 of size 3, 1 of size 5
and 1 of size 7. We observe aggregation in the emerging market structure: only
2 coalitions of size greater than 3 are formed, while there is a large number of
small coalitions of size 2 and 3. We see that only 2 big coalitions dominate the
market. The duopoly faces the competition of many small-size coalitions and
single sites, which are less efficient. As a result we can say that a decreasing
ratio of consumers to sites encourages the emergence of concentration tending
to a monopolistic market structure.

Results of Scenario 3 (Decreasing Search Cost)

We suppose that the search cost decreases linearly for all consumers with
time. The search cost at time step 1 is 1.0 for all consumers and 0.25 at
the end of the simulation. The reduction of search cost has two implications.
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On one hand the natural territories of sites, which are given by the formula√
c/t, decrease with the search cost, meaning that with time sites become less

connex among them (the intersection of their natural territories diminishes)
and as a result, it is more easy for a site to accept to coalesced with another
site. The simulations reveal that the same number of coalitions is formed
as when the search cost is constant, but we do not observe the presence of a
large size coalition. On the contrary, we observe more medium-sized coalitions.
When the ratio of consumers to sites decreases with time (this setting lead
to a concentrated market structure as mentioned before), we see that the
market is less concentrated as the search cost decreases. This creates more
opportunities for coalitions to be formed resulting in a market in which more
coalitions manage to grow. As a result, the decrease in the consumers’ search
cost with time diminishes market concentration.

Results of Scenario 3 (Price Adjustment)

We suppose that sites have the possibility to adjust their prices according to
the two alternative algorithms. We are interested in seeing whether or not
the concentration that emerges in the market is affected. The sequence of
events remain the same except for the fact that we suppose that sites adjust
their prices in the beginning of each time step (between each period of search
and consumption). The price adjustment is such that δpmin = δpmax = 1.0.
The initial price of each site entering the market is randomly selected in [0.1,
20.0]. The experiments with the different price adjustment algorithms show
that both kinds of price adjustment algorithms give better average profits
for all sites, DFA being more efficient. However, we observe that the price
adjustment is more beneficial for coalesced sites than for non-coalesced. In
terms of aggregation, the DFA price adjustment algorithm diminishes less the
concentrated character of the market compared to the RND price adjustment
algorithm. As a result, with price adjustment, the average profit of coalesced
sites is better than the profit of non-coalesced sites, confirming the result of
the static comparative model.

8.5.5 Remark

All the experiments of the previous scenarios have been repeated with hetero-
geneity in the agents’ characteristics (the corresponding values were selected
following a uniform distribution): search cost, reduced search cost, reserva-
tion utility, adaptation cost, prices (constant) and entry cost. However, the
determining value for these runs appeared to be the average value of these pa-
rameters resulting in similar results than those obtain with symmetric agents.
The relative “noise” brought by variations in these parameters do not change
the qualitative results.
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8.6 Conclusion

This article summarizes the main results we obtained in an analytical model
and its agent-based extension for studying the emerging coalition structure in
electronic markets. The analytical model showed that the presence of search
costs for the consumers (that are independent from the adaptation costs) pro-
vides original and interesting results: (i) coalesced sites have an incentive to
lower their prices and (ii) sites choose a highly differentiated partner to form
a coalition. The agent-based model, enriched by additional behaviors for the
consumers and the sites, extends the analytical model with less restricting as-
sumptions. The main findings of the agent-based model are the following: (1)
the dynamic process coalition formation confirms and generalizes the theoret-
ical result in terms of coalition structure: non-connex partners are preferred
when forming a coalition, (2) the growth of the coalition is halted before it
reaches the size of the maximum possible non-connex coalition, (3) although
non-connex partners are always preferable for coalescing with, the dynamic
process of multiple coalition formation allows the emergence of coalitions con-
taining connex components as a reply to the competition from existing coali-
tions in the market, (4) the agents’ growth allows the coalitions to grow more
through the reduction of the random effect (consumers’ growth) and the pos-
sibility to accept connex components (sites’ growth), (5) an increasing ratio
of consumers to sites encourages the emergence of dispersion in the market
resulting to an oligopoly of big coalitions coexisting in the market, (6) a de-
creasing ratio of consumers to sites encourages the emergence of concentration
in the market tending to a monopolistic market structure, (7) the decrease
in the consumers search cost with time diminishes market concentration. Ex-
periments performed on the role of heterogeneity proved to have little or no
impact on qualitative results mentioned above. If we look at the geographical
economy literature applied to the aggregation of shops in some locations, two
main forces are present: the lowering of consumers’ search costs (whose main
component is transportation cost) and the increased competition due to the
proximity of shops. The first force drives aggregation by directly increasing
the demand. The second one may limit this aggregation due to an increase
in competition. In the world of B-to-C Internet sites, these mechanisms are
modified because search costs are independent from transportation costs and
because aggregation may arise through coalition of independent sites at (al-
most) no cost. Sites prefer to coalesce with differentiated partners, not for
avoiding stronger competition but for maximizing the increased market share
effect in the competition with non coalesced firms. The larger number of en-
try of new B-to-C Web-sites compared to the growth of consumers buying on
the Internet, excessively favored by the venture capitalism bubble for Web-
sites before the market was there, seems to be the main factor explaining the
market concentration on Internet.
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Summary. In this paper the methodology of Agent-Based Computational Eco-
nomics (ACE) is used to explore under what conditions trust is viable in markets.
The emergence and breakdown of trust is modeled in a context of multiple buyers
and suppliers. Agents develop trust in a partner as a function of observed loyalty.
They select partners on the basis of their trust in the partner and potential profit.
On the basis of realized profits, they adapt the weight they attach to trust relative
to profitability, and their own trustworthiness, modeled as a threshold of defection.
Trust turns out to be viable under fairly general conditions.

9.1 Introduction

The viability of trust between firms in markets is a much-debated issue [9].
Economics, in particular transaction cost economics (TCE), doubts the vi-
ability of trust, on the argument that under competition, in markets, firms
behave opportunistically in favour of profit [13]. Thus, disproving skepticism
from TCE, it is of some theoretical and practical importance to explore un-
der what conditions trust can be viable. TCE proposes that people organize
to reduce transaction costs, depending on conditions of uncertainty and spe-
cific investments, which yield switching costs and a resulting risk of hold-up.
In this paper we employ TCE logic, but we also deviate from TCE in two
fundamental respects.

First, while TCE assumes that optimal forms of organization will arise,
yielding maximum efficiency, we consider that problematic. The making and
breaking of relations between multiple agents with adaptive knowledge and
preferences may yield complexities and path-dependencies that preclude the
achievement of maximum efficiency. Second, while TCE assumes that reliable
knowledge about loyalty or trustworthiness is impossible [12, 13], so that op-
portunism must be assumed, we expect that under some conditions trust is
feasible, by inference from observed behaviour, and that trustworthiness is vi-
able, in yielding profit. To investigate this, the methodology of ACE enables
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us to take a process approach to trust [4, 15, 14], by modeling the adaptation
of trust and trustworthiness in the light of experience in interaction.

The analysis is conducted in the context of transaction relations between
multiple buyers and suppliers, where buyers have the option to make rather
than buy, which is the classical setting for the analysis of transaction costs. We
employ a model developed from an earlier model from Klos and Nooteboom
[7]. In this model, agents make and break transaction relations on the basis
of preferences, based on trust and potential profit.

The paper proceeds as follows. First, further specification is given of tech-
nical details of the model, needed to fully understand the experiments. Next,
we specify the experiments and present the results. The paper closes with
conclusions.

9.2 The Model

9.2.1 Preference and Matching

In the literature on trust distinctions are made between different kinds of trust,
particularly between competence trust and intentional trust [9]. Intentional
trust refers, in particular, to presumed absence of opportunism. That is the
focus of TCE and also of the present paper. We focus on the risk that a
partner will defect and thereby cause switching costs. In our model trust may
be interpreted as a subjective probability that expectations will be fulfilled
[2], which here entails realization of potential profit. Thus, expected profit (E)
would be: E = profitability·trust. However, in the model, agents are allowed
to attach more or less weight to trust relative to potential profit (α), on the
basis of a generalized preference score:

scoreij = profitabilityαi

ij · trust1−αi

ij (9.1)

where: scoreij is the score i assigns to j, profitabilityij is the profit i can poten-
tially make ‘through’ j, trustij is i’s trust in j and αi ∈ [0, 1] is the weight i
attaches to profitability relative to trust, i.e. the ‘profitelasticity’ of the score.
α is adaptive, as a function of realized profit. This ‘Cobb-Douglas’ function
adopted from the literature on production functions, entails that profitability
and trust are complements (they both contribute to the preference score) as
well as substitutes (less profitability can be compensated with more trust).

At each time step, all buyers and suppliers establish a strict preference
ranking over all their alternatives. Random draws are used to settle the rank-
ing of alternatives with equal scores. The matching of partners is modeled
as follows. On the basis of preferences buyers are assigned to suppliers or to
themselves, respectively. When a buyer is assigned to himself this means that
he makes rather than buys. In addition to a preference ranking, each agent
has a ‘minimum tolerance level’ that determines which partners are accept-
able. Each agent also has a quota for a maximum number of matches it can be



9 Agent Based Modeling of Trust Between Firms in Markets 123

involved in at any one time. A buyer’s minimum acceptance level of suppliers
is the score that the buyer would attach to himself. Since it is reasonable that
he completely trusts himself, trust is set at its maximum of 1, and the role
of trust in the score is ignored: α = 1. The algorithm used for matching is a
modification of Tesfatsion’s [11] deferred choice and refusal (DCR) algorithm
and it proceeds in a finite number of steps, as follows:

1. Each buyer sends a maximum of oi requests to its most preferred, ac-
ceptable suppliers. Because the buyers typically have different preference
rankings, the various suppliers will receive different numbers of requests.

2. Each supplier ‘provisionally accepts’ a maximum of ajrequests from its
most preferred buyers and rejects the rest (if any).

3. Each buyer that was rejected in any step fills its quota oiin the next step
by sending requests to next most preferred, acceptable suppliers that it
has not yet sent a request to.

4. Each supplier again provisionally accepts the requests from up to a max-
imum of ajmost preferred buyers from among newly received and previ-
ously provisionally accepted requests and rejects the rest. As long as one
or more buyers have been rejected, the algorithm goes back to step 3.

The algorithm stops if no buyer sends a request that is rejected. All pro-
visionally accepted requests are then definitely accepted.

9.2.2 Trust and Trustworthiness

Trust, taken as inferred absence of opportunism, is modelled as observed loy-
alty, i.e. observed absence of defection. Following Gulati [4], we assume that
trust increases with the duration of a relation. As a relation lasts longer, i.e.
there is no defection, one starts to take the partner’s behaviour for granted,
and to assume the same behaviour (i.e. commitment, rather than breaking
the relation) for the future. Thus, agent i’s trust in another agent j depends
on what that trust was at the start of their current relationship and on the
past duration of that relationship:

tji = tjinit,i + (1 − tjinit,i)

(
1 − 1

fx + 1 − f

)
(9.2)

where

tji= agent i’s trust in agent j,

tjinit,i = agent i’s initial trust in agent j,

x= the past duration of the current relation between agents i and j, and
f = trustFactor.

This function is taken simply because it yields a curve that increases with
decreasing returns, as a function of duration x, with 100% trust as the limit,
and the speed of increase determined by the parameter f .



124 Alexander Gorobets and Bart Nooteboom

In addition, there is a base level of trust, which reflects an institutional
feature of a society. It may be associated with the expected proportion of
non-opportunistic people, or as some standard of elementary loyalty that is
assumed to prevail. If an agent j, involved in a relation with an agent i, breaks
their relation, then this is interpreted as opportunistic behaviour and i′s trust
in j decreases; in effect, i’s trust drops by a percentage of the distance between
the current level and the base level of trust; it stays there as i’s new initial
trust in j, tjinit,iuntil the next time i and j are matched, after which it starts

to increase again for as long as the relation lasts without interruption.
The other side of the coin is, of course, one’s own trustworthiness. This is

modelled as a threshold τ for defection. One defects only if the advantage over
one’s current partner exceeds that threshold. It reflects that trustworthiness
has its limits, and that trust should recognize this and not become blind [10,
9]. The threshold is adaptive, as a function of realized profit.

9.2.3 Costs and Profits

Profit has the following elements. First, buyers may increase returns by selling
more differentiated products. Second, suppliers may reduce costs by generat-
ing production efficiencies. There are two sources of production efficiency:
economy of scale from a supplier producing for multiple buyers, and learning
by cooperation in ongoing buyer-supplier relations. Economy of scale can be
reaped only in production of standardized products, with general-purpose as-
sets, and learning by cooperation can only de achieved in production that is
specific for a given buyer, with buyer-specific assets.

This yields a link with the fundamental concept, in TCE, of ‘transaction
specific investments’. We assume a connection between the differentiation of a
buyer’s product and the specificity of the assets required to produce it. In fact,
we assume that the percentage of specific products is equal to the percentage
of specific assets. This is expressed in a variable di ∈ [0, 1]. It determines
both the profit the buyer will make when selling his products and the degree
to which assets are specific, which determines opportunities for economy of
scale and learning by cooperation. This parameter is part of the ‘state of the
world’, in this case the market, and applies to all agents, in a given run of the
model.

Economy of scale is achieved when a supplier produces for multiple buyers.
To the extent that assets are specific, for differentiated products, they cannot
be used for production for other buyers. To the extent that products are
general purpose, i.e. production is not differentiated, assets can be switched to
produce for other buyers. In sum, economy of scale, in production for multiple
buyers, can only be achieved for the non-differentiated, non-specific part of
production, and economy by learning by cooperation can only be achieved for
the other, specific part.

Both the scale and learning effects are modelled as follows:
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y = max

(
0, 1 − 1

fx + 1 − f

)
(9.3)

where:

For the scale effect f= scaleFactor, x is general-purpose assets of supplier j
summed over all his buyers. Here, y denotes scale efficiency achieved by
supplier j.

For the learning effect f= learnFactor; x is the number of consecutive matches
between supplier jand buyer i.Here, y denotes learning efficiency achieved
in the collaboration between supplier j and buyer i.

Formula (9.3) expresses decreasing returns for both scale and experience
effects. The scale effect is specified in such a way that a supplier can be more
scaleefficient than a buyer producing for himself only if the scale at which he
produces is larger than the maximum scale at which a buyer might produce for
himself. For the learning effect, a supplier’s buyerspecific efficiency is 0 in their
first transaction, and only starts to increase if the number of transactions is
larger than 1. If a relation breaks, the supplier’s efficiency due to his experience
with the buyer drops to zero.

All this results in the following specification of profit. The number of gen-
eralpurpose assets that a supplier j needs in order to produce for a buyer i,
is equal to(1 − di)(1 − es,j), where es,j is scale efficiency (0< es,j <1) in
the production volume of supplier j. The number of buyer-specific assets that
a supplier j needs, to produce for a buyer i, is equal to di(1 − ei

l,j), where

ei
l,j is learning efficiency (0< ei

l,j <1) in the relationship between buyer i
and supplier j. Thus, the profit that can potentially be made in a transaction
between a buyer i and a supplier j is:

pj
i + pi

j = (1 + di) − (di(1 − ei
l,j) + (1 − di)(1 − es,j)). (9.4)

The first part of the formula specifies returns and the second part specifies
costs. It is assumed that the agents involved share the profit equally.

9.2.4 Adaptation

An agent is adaptive if ‘the actions of the agent in its environment can be as-
signed a value (performance, utility, payoff, or the like); and the agent behaves
in such a way as to improve this value over time’ [5]. In this model, agents
adapt the values for α ∈ [0, 1] (weight attached to profit relative to trust) and
τ [0, 0.5] (threshold of defection) from one time step to the next, which may
lead to changes in the scores they assign to different agents. The idea is that
the values that have led to high performance (profit) increase probability that
those values will be selected again. This is a simple model of ‘reinforcement
learning’ [1, 6].

While τ could conceivably rise up to 1, a maximum of 0.5 was set because
initial simulations showed that otherwise relations would get locked into initial
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situations, with little switching. Note that this biases the model in favour of
opportunism.

9.2.5 The Algorithm

The algorithm of the simulation is presented by the flowchart in Figure 9.1.
This figure shows how the main loop is executed in a sequence of discrete
time steps, called a ‘run’. Each simulation may be repeated several times as
multiple runs, to even out the influence of random draws in the adaptation
process. At the beginning of a simulation, starting values are set for certain
model parameters. The user is prompted to supply the number of buyers and
suppliers, as well as the number of runs, and the number of timesteps in each
run.

Fig. 9.1. Flowchart of the simulation
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9.3 Experiments

9.3.1 Hypotheses

The goal of the experiments is to test the following hypotheses.

Counter to TCE we expect:

Hypothesis 1 Due to complexities of interaction maximum efficiency can
rarely be attained.

Hypothesis 2 Even in markets, where profit guides adaptation, high trust(low
α; high τ) may be sustainable.

Hypothesis 3 The choice between an opportunistic switching strategy and
loyalty depends on the relative strength of scale effects and learning by coop-
eration

In agreement with TCE we expect:

Hypothesis 4 When trust is low, higher asset specificity/differentiated prod-
ucts yields less outsourcing.

Hypothesis 5 The more trust, the more collaboration in ‘buy’, rather than
‘make’.

Recall that if during the matching between buyers and suppliers a buyer
decides to ‘buy’ rather than ‘make’, he can follow two different strategies. One
is an opportunistic scale strategy, where the buyer seeks a profit increase on
the basis of economy of scale, by trying to find a supplier who serves more
than one buyer. This entails much switching and less emphasis on loyalty and
trust. The other strategy is the learning by cooperation strategy, seeking an
increase of profit in ongoing relations. This entails less switching and more
emphasis on loyalty and trust. Thus, in manipulating the strength of the scale
effect relative to the effect of learning by cooperation, we can bias the model
towards opportunism or loyalty. This interacts with the degree of asset speci-
ficity/specialization, since economy of scale applies only to general purpose
assets, and learning by cooperation only to specific assets. Note that there is
an overall bias towards the opportunistic scale strategy, in that economy of
scale is immediate, thus yielding a more immediate return in profits, while
learning by cooperation takes time to build up. Thus, we are stacking the
odds in favour of the TCE theory that we criticize. However, this does seem
to be a realistic feature, supporting the intuition that trust is more viable in
a long-term perspective.
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9.3.2 Model Parameters

Each simulation run involves 12 buyers and 12 suppliers and continues for
100 timesteps. In order to reduce the influence of random draws, each run is
repeated 25 times and results are averaged across all runs. Initially, results
are also averaged for the two classes of agents: buyers and suppliers, in order
to explore systematic effects. Each buyer’s offer quota (maximum number of
suppliers used) was fixed at 1, and each supplier’s acceptance quota (maximum
number of customers) was set to 3. In previous experiments with each supplier
j’s acceptance quota set to the total number of buyers, the system quickly
settled in a state where all buyers buy from a single supplier. For this reason,
suppliers were only allowed to have a maximum of three buyers. This limits the
extent of the scale economies that suppliers can reach. A maximum number
of buyers may be associated with competition policy setting a maximum to
any supplier’s market share.

For the test of our hypothesis, we consider different values for the percent-
age of specific assets/differentiated products: d= 25, 45, and 65 %. We vary
initial trust in the range 10, 50 and 90%, initial threshold for defection (τ)
from 0 to 0.5, initial weight attached to profit relative to trust (α) from 0.0
to 1.0, and the fixed parameters of both the strength of economy of scale and
learning by cooperation from 0.5 to 0.9.

9.4 Results

We present the results in the order of different starting values of trust. This
reflects different institutional settings, from high to low trust ‘societies’. Here,
we can see to what extent those are stable or shift. In particular, the question
is whether high initial trust can be sustained, and whether perhaps distrust
can evolve into trust.

9.4.1 An Individual Trajectory

First to give some feel of what is going on, we present and discuss time paths
for selected individual relations, to illustrate the process of switching, or lack
of it. Subsequently, we present the overall results, in comparison with our
expectations, on the basis of averages, across runs as well as agents (all buyers,
all suppliers).

Since we are particularly interested in what happens at high trust, we
select high trust case from a simulation with parameters: Initial Trust is 90%,
the weight attached to profit relative to trust (α ) is zero, the threshold of own
defection (τ ) is at its maximum of 0.5, the factors indicating the strength of
learning and economy of scale (Learnfactor & Scalefactor) had an intermediate
value of 0.5. In this case, which is biased towards trust and loyalty, agents are
expected to favour loyalty and the learning by cooperation strategy.
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Fig. 9.2. Buyer 2’s profit

Figure 9.2 shows the actual profit for buyer 2. For the run with d=0.25
buyer 2 buys from supplier 6, for d=0.45 from supplier 3 and for d=0.65 from
supplier 2. In his relation with supplier 6, for d = 0.25, his trust in that supplier
increases up to almost the maximum of 1.0 (see Fig. 9.3). Not shown is the
result that the same applies to supplier’s trust in buyer 2. For other values of
d buyer 2 has no relation with supplier 6, so that his trust does not get any
opportunity to rise. Supplier 6’s profit is shown in Figure 9.4. For d = 0.25, he
offers a big scale effect, producing for 3 buyers simultaneously: buyers 4 and 6
in addition to buyer 2. For d = 0.65, supplier 6 has 2 buyers, nr. 5 and 6, and
he doesn’t have any buyer for d=0.45. Not shown is the result that supplier 6’s
weight attached to profit relative to trust (α ) and threshold of own defection
(τ) remain about the same as their starting values. As shown in Figure 9.5,
buyer 2 at first thinks he can increase profit by increasing the weight attached
to profit relative to trust (α), but then learns that this does not work and
reduces it again. Not shown is that his threshold of own defection (τ ) remains
at its initial value of 0.5.

9.4.2 Overall Results

Now we turn to the more representative, overall results, in terms of averages
across agents and runs (for the details see Gorobets and Nooteboom [3]).

All our expectations are borne out by the experiments. Of course, simu-
lation is not equivalent to empirical testing. The test is virtual rather than
real. We have only shown that under certain assumptions emergent properties
of interaction satisfy the hypothesis. The significance of this depends on how
reasonable the assumptions in the model are considered to be.

If we compare across the different settings of high, medium and low trust,
under the same conditions concerning the relative strength of scale effect,
learning by cooperation, and under the same initial conditions concerning
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Fig. 9.3. Buyer 2’s trust in supplier 6

Fig. 9.4. Supplier 6’s profit

weight attached to trust and threshold of defection, profit declines more often
than it increases, as we go from high to low trust.

Overall, the results can be summarized as follows. A strong effect of learn-
ing by cooperation, a high weight attached to trust, and high loyalty favour the
learning by cooperation strategy for high levels of specific investments, while
a high weight attached to profit and high loyalty favour the scale strategy for
low and average levels of specific investments.
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Fig. 9.5. Buyer 2’s α

9.5 Conclusions

The general outcome is that in interactions between agents both trust and
opportunism can be profitable, but they go for different strategies. This sug-
gests that there may be different societies, going for different strategies, of
switching or of loyalty, which settle down in their own self-sustaining systems.
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10.1 Introduction and Background

Ever since the field of economics emerged there has been continual debate over
the mechanisms and drivers of economic growth. Two conceptual views that
are diametrically opposite are embodied in the fields of macroeconomics and
microeconomics. Both of these arenas have different philosophical foundations,
macroeconomics being predominantly focused on the behaviour of complete
economies reacting to external stimuli, whilst microeconomics is concentrated
on the behaviour of the smallest components of an economy, namely the var-
ious actors contained within it, interacting to form an aggregate of economic
behaviour.

The macroeconomic view sees the processes of economic behaviour as being
relatively static, with the belief that these processes inherently lead to an equi-
librium state. A change in the environment the economy operates within will
alter this equilibrium, once the change has concluded, the economy will return
to another equilibrium position. Specific relationships between behaviour and
outcomes at a granular level, for example the link between entrepreneurship
and wealth creation, are ignored.

The microeconomic view, in contrast, places the greatest importance on
individuals and their decision making, the core belief being that human behav-
iour isn’t necessarily rational and processes inherent in the working economy
fluctuate depending on individual or firm behaviour, and can’t consequently
be considered efficient or even necessarily predictable.

Whilst there are many areas of overlap between these perspectives, there
are noticeable gaps, specifically in the areas of entrepreneurial impact, the
role of innovation, the process of entry and exit of firms in the marketplace,
and the relative efficiency within firms of introducing innovation.

The microeconomic view is drawn from Schumpeter’s Theory of Economic
Development, the underlying focus being on individual human behaviour
which, when aggregated, represents building blocks for the overall economy,
an approach that can be seen as akin to social science (Shionoya 1997). One
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of the theory’s focal areas is the perspective that economic growth is driven
by dynamic behaviour amongst all economic actors, and equilibrium is never
reached – the competitive behaviour inherent in the marketplace continually
creates disequilibrium.

Central to the theory is the role of the entrepreneur, the changing cycle
of innovation, and the dynamic interplay between firms operating in a highly
competitive environment. Schumpeter places the entrepreneur as the central
figure causing disequilibrium (Clemence and Doody 1966) whilst other per-
spectives see them taking advantage of disequilibrium conditions rather than
being a cause (Kirzner 1973). Within this context, two areas of economic pos-
tulation and analysis have emerged over the past several decades - evolution-
ary economics and industrial dynamics. Whilst not being mutually exclusive,
these new areas view economic growth from different perspectives, attempt-
ing to understand the intrinsic reasons for growth using different concepts and
methods of analysis.

The evolutionary economics concept holds that the economy can be per-
ceived as a large population of diverse agents, incorporating technology change
and self-transformation of industry structures (Nelson 1994). From this, em-
pirical studies with this population perspective are feasible and interactive
behaviour within the population can theoretically be modeled. With the avail-
ability of modern computational tools, much of the focus in this area has
moved toward formal simulation modeling, where multiple combinations of
diverse economic elements can be synthesized and overall economic growth
examined under varying environmental conditions.

In comparison, industrial dynamics represents a desire to more fully un-
derstand the intrinsic behaviour between all participants in an economic en-
vironment, whilst still attempting to understand the underlying reasons for
economic growth at a higher and observable level. As quoted, “Economic
growth can be described at the macro level, but it can never be explained
at that level” (Carlsson and Eliasson 2001). The broad environment is still
understood to be characterised by essentially Schumpeterian behaviour, how-
ever the ideal focus within industrial dynamics is to quantify this behaviour
within the more general purpose of integrating the specific behaviour by spe-
cific actors (whether they are firms, consumers, institutions, or entrepreneurs)
to the theoretical and empirically observable behaviour inherent in a dynamic
environment.

10.2 Key Issues and Objectives

Taking into account the background provided to this point, and recognising
the ongoing debate within the economic and industrial dynamics arenas con-
cerning the fundamental nature of economic growth and how a competitive
inter-firm environment fundamentally operates, there is clearly a need to ex-
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plore the attributes of this environment in greater detail and to focus on the
impacts introduced by diverse competitive behaviours.

From a system modeling perspective, there is a fundamental question at
hand – can the Schumpeterian environment representing a complex economic
system be adequately modeled to allow greater insight into these issues? In
particular, can a model be established that can operate both at a holistic,
aggregated level and a lower level where the specific behaviour of individual
actors in the economy can be isolated and quantified? For this second level,
can industrial dynamics be explored to as granular level as possible?

The focus of this paper is to highlight the relationships between macroeco-
nomic effects and the diverse microeconomic actions implicit in firm decision-
making, so as to understand their aggregative effects on an economy.

The methodology undertaken was to establish a model suitable for a range
of Schumpeterian behaviours to operate within, and be able to isolate the im-
pact of specific competitive behaviour for subsequent analysis and exploration.
The assumption is that economic growth is endogenous and an outcome of
interactions at a micro level rather than being the outcome of external factors
(Metcalfe 1998).

Within this context, the sub-objectives of the project were to explore the
following specific economic and competitive behavioural concepts:

1. The impact of random innovation on firms within an economy.
2. The availability of credit and differentiation of supply to entrepreneurs.
3. The impact of predator behaviour amongst firms.
4. The impact of innovation investments on firm growth.
5. The impact of imitation and marketing defense investments on firm growth

and survival.

10.3 Model Design

The model used for this project was adapted from the agent-based simulation
model developed by Bruun and Luna in 2000 to examine endogenous eco-
nomic growth within an artificial economy. This model established a founda-
tion environment where the interaction between consumers, workers/artisans,
entrepreneurs and firms defined the economy. Activity in the model was in
the form of consumer purchasing behaviour within a context of firm creation
and dissolution. The dynamic nature of agents adapting to different roles and
the incorporation of behavioural randomness within run-time parameters was
a key feature of the model, ensuring that as much as possible it represented
a “real” economy where individual decision-making cannot be predicted.

For this project, the Bruun and Luna model has been enhanced to allow
a specific focus on five key environmental conditions, namely (1) how the
economy behaves at a macro level to the random introduction of innovation
at a firm level, and how this influences behaviour at an agent type level; (2)
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how behaviour is influenced when a relationship between credit availability
and proven entrepreneurial competencies is introduced; (3) how firms grow
or change when predator behaviour is allowed, represented by the acquisition
of one firm by another; (4) how growth is influenced by the potential for
innovation to be established by strategic decision-making within a firm to
allocate part of its profits into research and development expenditure; and (5)
the relatively more complex scenario where firms can imitate other firms at a
product level, using a proportion of profits to do so, and with the consequent
ability of firms to also establish a marketing-type defense against imitation
using proportions of profits.

Run-time execution and subsequent analysis is based on the establishment
of six discrete stages within the model. Each stage can be activated or deac-
tivated as a starting parameter depending the analysis purpose of each run.
The first stage represents the core Bruun and Luna model and is always ac-
tivated, being the foundation for all other stages to operate. In some cases,
stages must be activated in conjunction with others given the key variables
introduced into the model by these other stages.

Three new agent-level variables have been incorporated to support these
scenarios. A primary attribute for firms is Product Attractiveness Level, repre-
senting a key change from the original model in consumer purchasing decisions
whereby preference is given to firms with products at a higher attractiveness
level. The mechanisms for changing individual attribute levels vary within the
different stages of the model – it could be derived directly from random inno-
vation, an outcome from research and development expenditure, or the result
of firm imitation or marketing defense decisions. In all cases, the determina-
tion of the changed level is influenced by the degree of randomness inherent
within each stage.

Another important new attribute for firms is Financial Stability Level.
This is calculated and changed in a deterministic manner, representing the
degree of successful sales made by a firm over time, and increasing each time
a quantum number of sales are achieved. In a similar fashion to Product At-
tractiveness Level, the stability level of individual firms is used in a range of
agent behavioural decisions in multiple stages. Firm acquisition and imitation
and defense decisions are directly influenced by this attribute, and the out-
comes of each firm decision also have a corresponding impact on the value of
the stability level. To some extent this level is analogous to profit, however in
a simplistic way. All decisions to act based on Financial Stability Level are
influenced by randomness parameters.

Given the focus on entrepreneurs at both theoretical and model design
levels, an Entrepreneur Competency level attribute has also been established.
This is primarily used in Stage 2, where the risk undertaken by lending in-
stitutes in providing credit to entrepreneurs is examined under conditions of
different credit being available to different entrepreneurs depending on the
competency level of each entrepreneur changing over time. Credit availability
is critical to Schumpeter’s theory and is seen as crucial to entrepreneurial
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operation (Bloch 2000), whilst the risk borne by lenders to entrepreneurs is
based on opinion rather than firm knowledge (Knight). Randomness principles
also apply to credit availability decisions.

One of the design features for all stages is the degree of randomness ap-
plicable to almost all new variable settings at the run-time level. Whilst the
inclusion of randomness is in line with the core concepts of agent based model-
ing and represents the unpredictability of human behaviour, there are options
within the model to increase or decrease the probability of random events
from occurring. This capability, already available for some variables in the
Bruun and Luna model, ensured that experimental runs were carried out in
a relatively controlled but non-deterministic manner.

10.4 Results

10.4.1 Stage 1 – Random Innovation Impact Analysis

The design intent behind this stage of the model was to examine the impact
of introducing random product innovation on both macro and micro aspects
of the economy. This form of innovation is based on the early Schumpeterian
concept of innovation, where innovation is completely random and cannot be
consciously planned and introduced. The baseline version of the model works
on the principle that all firms supply a ubiquitous product, with consumers
changing preferences, or moving their shopping carts, through random settings
within the model’s environment.

The new firm attribute introduced in this stage, product attractiveness
level, provides a foundation for consumers to evaluate the offering of a firm,
and to make choices based on a scan of all firms in the immediate vicinity of
their shopping cart. Increasing the product attractiveness attribute of firms
is random, the degree of which being influenced by the random innovation
seed. The lower the setting of this seed the greater the probability of random
product attractiveness level increases within firms.

The model was run with five scenario settings – very high randomness to
very low. A very low scenario (representing negligible, or zero, innovation)
was deliberately sought to ensure that an equivalent baseline model execution
could be achieved, and hence validate the underlying logic of the original
model.

The results were interpreted using both macro and micro methodologies.
Graphs of GDP over time for all aggregate firms provide insight into the overall
performance of the economy, whilst individual firm and consumer decisions at
each time period were extracted and analysed so as to focus on numbers and
durations of effective firms, net account levels per firm, and hence calculate
the persistence of profit for effective firms, this being seen as a factor of unique
firm and industry attributes (Jacobson and Hanson 2001).
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Fig. 10.1. LOW Innovation Randomness Seed

Fig. 10.2. HIGH Innovation Randomness Seed

Figures 10.1 and 10.2 represent two extreme GDP profiles out of all scenar-
ios reviewed. From this, a small amount of innovation resulted in the highest
GDP peak in the earliest time frame whilst any greater innovation caused the
economy to degrade significantly.

The analysis outlined in Table 10.1 provides a more in-depth perspective
at the firm level. As to be expected, the baseline (no innovation) scenario
had the highest number of effective firms for the longest duration, and whilst
a low innovation seed resulted in the highest GDP it was not favorable to
individual firms. As innovation increased, profit increased although numbers
of firms decreased.
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Table 10.1. Random Innovation Scenarios

Seed Settings No. Effec- Average Average Net Persistence of
tive Firms Duration of Account Level Profit (Av Net

Firm (Time per Firm Account Level /
Periods) Firm Duration)

100 (High) 81 778 762,522 270
1,000 (Med – High) 99 965 433,385 69
10,000 (Medium) 119 1,465 44,340 12
100,000 (Low) 122 1,420 25,323 2
100,000,000 (V. Low) 123 1,471 91,102 53

10.4.2 Stage 2 – Risk / Entrepreneur Competency Evaluation

As part of the framework for credit supply decisions to be made, two agent
attributes were used in this stage – financial stability level and entrepreneur
competency level. An entrepreneur’s financial stability level increases incre-
mentally every time 100 demand signals have been successfully met. The en-
trepreneur’s competency level increases incrementally when the combination
of a successful credit request has been achieved and followed by the increase
of financial stability level. The outcome of these two levels in place is the
increased likelihood that an entrepreneur with a higher competence level and
hence a better history of success in utilising investments will be given pref-
erence by banks in comparison to those with less success. Within this stage,
with more credit the entrepreneurs in question will be in a better position to
attract workers.

The model environment is influenced by two variables, credit availability
and random dissolution. The lower the setting for credit availability increases
the likelihood that firms with a higher competence level will be successful in
seeking credit, whilst a low level in random dissolution implies that there is
higher likelihood that firms with a lower financial stability level will become
bankrupt. With these two variables in mind, the model was executed for five
scenarios – both variables high, both low, one high and low and vice versa,
and both set at medium levels.

Similar macro and micro analytical methods were used as in Stage 1. All
GDP graphs were similar, indicating robust and growing economies. Cyclic
behaviour was evident for all, an indicator that firms are entering and exiting
the marketplace, although there was some instability in the frequency and
amplitude of the cycles for the high credit availability and high dissolution
scenario.

When evaluating the scenarios from a micro perspective, however, there
are significant differences between the scenarios, and also a large difference
in the number of effective firms formed in general as compared to Stage 1.
Of the five scenarios, only two produced any effective firms – both of these
scenarios had a high credit availability setting. This implies that conditions
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for effective firm formation were very difficult, with the combination of lower
credit availability and the normal logic used for effective firm formation being
an inhibition factor. The generally low number of effective firms formed even
when credit availability was high is an indication of the difficulty imposed by
this combination.

Table 10.2. Risk / Entrepreneur Competency Scenarios

Credit Availability No. Average Average Net Persistence of
Seed / Effective Effective Duration Account Level Profit (Average
Firm Dissolution Firms of Firm per Firm Net Account
Seed Combinations (Time Level per

Periods) Firm Duration)

100 (High) 17 1,390 82,905 43
/ 100 (High)
100 (High) 11 1,372 268,488 196
/ 100,000,000 (Low)

10.4.3 Stage 3 – Impact of Predator Behaviour

The mechanism used within the model for this behaviour is based on relative
financial stability levels between firms. In general, the business rule allowing
predator behaviour focuses on firms of both very high stability levels and very
low. Once a firm has reached a high level they scan the environment for firms
with levels below a set amount, then make a decision to acquire them. These
decisions are affected by the inherent randomness settings within the model,
being controlled by a Predator Behaviour Likelihood setting at the start of
execution. The lower this Likelihood setting the more likely that predator
behaviour occurs.

Macro outcomes with normal GDP over time were identical, economies
apparently being robust and increasing generally with cyclic behaviour. The
maximum GDP achieved in all cases was approximately 37,000.

Some micro-level analysis is outlined in Table 10.3. The similarity of re-
sults across multiple likelihood settings correlates with the outcomes from the
macro GDP charts, emphasising a lack of sensitivity within the model for this
type of behaviour.

However, some general trends are observable from the results. The higher
the likelihood of predator behaviour the higher the number of effective firms
being formed. Linked to these higher numbers, however, is a smaller duration.
Average net account levels, or profit, and also persistence of profit is also less
for the firms in the higher likelihood settings.
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Table 10.3. Predator Behaviour Scenarios

Predator No. Average Average Persistence
Behaviour Effec- Duration Net of Profit
Likelihood tive of Firm Account (Average Net
Settings Firms (Time Periods) Level per Account Level

Firm per Firm Duration)

10 (Very High) 12 936 87,763 63
100 (High) 12 967 87,314 64
10,000 (Medium) 13 1,276 59,799 50
100,000 (Low) 13 1,276 59,799 50
100,000,000 (Very Low) 9 1,779 128,637 73

10.4.4 Stage 4 – Impact of R&D Investment

Innovation, with the consequent outcome of product improvements in the form
of increased attractiveness to consumers, is the mechanism for firm competi-
tion in this stage. However, rather than innovation being a random event as
in Stage 1, it is the outcome of deliberate investment in research and devel-
opment. This type of innovation has been noted by Schumpeter as one form
of economic growth (Kirchoff 1991).

Firms can undertake an investment in R&D, partaking some of their fi-
nancial stability in the process, with an understanding that this investment
may or may not be successful, i.e. their products may be improved as a result
or they simply decrease their stability without any change in their product
offering in the marketplace.

The model contains two environmental “levers” to explore the effect of
planned innovation and the risk of consequent success or failure. These are
run-time settings that represent the probability that a firm will make a strate-
gic decision to invest in R&D, and the probability that these investments will
be effective or not. The lower the values for these two settings, StategicDeci-
sionMaking and Effectiveness, the greater the probability that they will occur
for the firms selected as part of the random process inherent in the model.
Investment can be classified as either proportional (to financial stability level)
or fixed.

GDP profiles across all scenarios were similar, demonstrating cyclic growth
as per past stages, however there were some anomalies. Very high and high
combinations of investment and effectiveness (as seen in Figures 10.3 and
10.4), highlighting that excessive expenditure in R&D (even if succcessful)
was counter-productive at an economy level.

Some micro-level analysis is summarised in tables 10.4 and 10.5. As per
GDP outcomes, the10/10 scenario represents a poor outcome from both pro-
portional and non-proportional perspectives. The medium/medium combina-
tion is a positive one for the number of effective firms and their duration but is
the worst for net profit and profit persistence. The best scenarios for the com-
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Fig. 10.3. HIGH Investment & Effectiveness (Non-Proportional)

Fig. 10.4. VERY HIGH Investment & Effectiveness (Proportional)

Table 10.4. R&D Investment/Effectiveness Scenarios (Proportional)

R&D Investment No. Average Average Persistence of
& Effectiveness Effec- Duration Net Profit (Average
Combinations tive of Firm Account Net Account

Firms (Time Level Level per
Periods) per Firm Firm Duration)

10 (V. High) / 10 (V.High) 6 667 244,827 166
100 (High) / 100 (High) 12 1,206 102,975 74
1000 (Med) / 1000 (Med) 12 1,658 89,241 13
10 (V. High) / 10,000 (Low) 12 1,143 153,207 84
10,000 (Low) / 10 (V.High) 12 1,546 134,579 41
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Table 10.5. R&D Investment/Effectiveness Scenarios (Non-Proportional)

R&D Investment No. Average Average Persistence of
& Effectiveness Effec- Duration Net Profit (Average
Combinations tive of Firm Account Net Account

Firms (Time Level Level per
Periods) per Firm Firm Duration)

10 (V. High) / 10 (V.High) 9 407 -84,713 -234
100 (High) / 100 (High) 9 1,790 327,467 189
1000 (Med) / 1000 (Med) 12 1,658 89,241 13
10 (V. High) / 10,000 (Low) 8 593 94,228 89
10,000 (Low) / 10 (V.High) 12 1,546 134,579 41

bination of number of firms, duration, and general profit, are the high/high
and very low/high combinations. Compared to the proportional scenario, the
non-proportional high/low combination produces poor micro outcomes.

10.4.5 Stage 5 – Imitation and Marketing Defense Impacts

This last stage focuses product imitation and defense against imitation. It is
similar in context to Stage 4 where firms make strategic choices as to where
they should place their investments as a means of improving their competitive
position (Schnaars 1994). As a form of innovation, imitation requires costs
and capabilities to be present in a firm for the decision and action to occur
(Andersen 2003).

Imitation is defined here as the action whereby a firm checks other firms for
signs of products strength and increasing sales growth, then decides to invest
in imitation such the firm’s own product attractiveness is slightly higher than
that of the other firm. Defense is defined as the action whereby a firm invests
in its own product to increase its value and hence act as a defense against
potential imitation. It should be noted that product attractiveness does not
have to only imply that the product itself is superior to other products and
hence becomes more attractive to consumers. The investment may be in the
nature of a pure marketing investment such that the perception of the product
is one of more attractiveness to the consumer – specific product features are
only one element of the marketing mix.

From an environmental setting perspective, the variables ImitationInvest-
ment and DefenseInvestment allow control over the degree of investment
within the model. The lower the setting for these variables, the greater
the probability that they will occur for the firms randomly selected. There
were ten scenarios evaluated within this stage, five for proportional invest-
ments and five for non-proportional. Within each group of five, the invest-
ment/defense combinations were structured as high/high, medium/medium,
low/low, high/low, and low/high.
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GDP macro analysis revealed significant differences between each scenario,
with proportional and non-proportional investment scenarios being similar
across all combinations. All scenarios involving high or medium defense in-
vestment resulted in a declining economy. Only the two scenarios with low
defense investment resulted in a robust economy, implying a clear link be-
tween declining economic strength and excessive defense investment.

Table 10.6. Imitation Defense Scenarios (Proportional Investment)

Imitation No. Average Average Persistence of
and Defense Effec- Duration Net Profit (Average
Investment tive of Firm Account Net Account
Combinations Firms (Time Level Level per

Periods) per Firm Firm Duration)

High(100)/High(100) 8 523 -104,611 -386
Med(10,000)/Med(10,000) 10 1,475 -37,049 -26
Low(1,000,000)/Low(1,000,000) 15 1,329 23,174 47
High(100)/Low(1,000,000) 9 1,521 -43,115 -109
Low(1,000,000)/High(100) 10 740 -80,403 -298

Analysis at a micro level tallies generally with GDP results, except in
the area of a high/low combination. Whilst the economy appears robust in
this scenario, negative profits are apparent for the firms involved. A situation
where there is a small amount of competitive behaviour at both imitation
and defense levels appears to result in the optimum conditions for both the
economy and firms in general.

10.5 Conclusion

From the range of scenarios examined it was clear that varied run-time condi-
tions produce quite diverse outcomes. This highlights the inherent sensitivity
of the model, and the future potential for exploration within scenarios of
multi-variable conditions.

Starting with the impact of random innovation, and incorporating the
Product Attractiveness Level variable as a means of influencing consumer
choice, the varied settings highlighted the dramatic impact that innovation
(which is assumed to lead to changes in consumer product preferences) has on
the economy and on firm attributes. The low innovation level setting indicated
that there may be some tolerance level where a small amount is beneficial for
the economy (from a maximum GDP perspective) and firm account levels.

In the area of credit availability where an Entrepreneur Competency Level
variable was introduced as an aid in risk evaluation by banks, it was clear
that availability has a significant impact on the number of effective firms
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formed. The scenario of high credit availability and low probability of disso-
lution produced the best result from a firm profit perspective but ran counter
to expectations in that it contained a lesser number of effective firms.

Whilst the predator behaviour stage lacked sensitivity in its execution
there was sufficient differentiation between a predator behaviour environment
and a nominally non-predator behaviour environment. Generally the environ-
ment allowing this behaviour produced more effective firms, but these firms
generally had less net profit. The financial stability level of firms (introduced
as a variable to aid in firm decision-making in this stage and others) was some-
what better in a non-predator situation, but not by a significant amount.

In comparison with random innovation, the results for planned innovation
as an expression of a competitive strategic decision are quite different. The
use of R&D Investment and R&D effectiveness levers, as well as the decrease
in financial stability as firm profit was reduced once a decision was made to
invest in R&D, created a varied range of outcomes. Excessive levels of in-
novation for both types result in degradation of performance at an economy
level, however the variance in the number of effective firms under different
conditions of investment and effectiveness for strategic decision making cir-
cumstances is quite marked compared to the more linear outcomes from the
random innovation stage. Medium investment/medium effectiveness combi-
nations resulted in maximum firm numbers whilst several other combinations
produce good profit outcomes and financial stability levels. No single scenario
stood out, taking into account all measures available.

The last stage extended the decision making process within firms, involv-
ing the allocation of profits towards two types of competitive behaviour –
imitation of another firm’s product and a corresponding marketing-oriented
defense against either real or potential imitation. The two variables involved
in these decisions are Imitation Decision and Marketing Defense Decision. All
decisions were focused on the improvement in a firm’s Product Attractiveness
Level, with a corresponding decrease in Financial Stability Level.

These imitation and defense scenarios demonstrated the widest variety in
behaviour at GDP levels and effective firm formation, and produced the lowest
profit levels than in any other stage. The low investment/low defense scenario
was clearly the best across most measures.
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Summary. The fact that selfish behavior may not achieve full efficiency at the ag-
gregate level has been well known in the literature. Therefore we need to cope with
the socio-economic system by attempting to stack the deck in such a way that indi-
viduals with selfish incentives have to do what is the desirable thing. Of particular
interests is the question how social interactions among individuals can be restruc-
tured so that they are free to choose their actions while avoiding outcomes that
none would have chosen. In this paper, we study the collective construction process
of social norms and the emergence of collective intelligence of networked evolving
agents. The wisdom of collective agents is interpreted as emergence of behavioral
rules that constitute constraints on social interactions so that self-interested agents
can achieve efficient and equitable outcomes.

11.1 Introduction

It is common in many markets that the buying decision of one consumer influ-
ences the decisions of others. The general effects applying to all the consumer
decisions, markets also have strong positive or negative network effects. Popu-
lar examples of positive network effects are the willingness to adopt a product
innovation correlates positively with the number of existing adopters. Positive
network effects in markets mainly originate from two different areas, the need
for compatibility to exchange information and the need for complementary
products and services.

On the other hand, in many cases, the existence of network externalities
results in so called madness of crowd. Economic implications resulting from
the bandwagon and herding behavior are broadly discussed in the literature
[1]. Network externalities often lead to Pareto-inferior outcomes due to coor-
dination failure. The fact that selfish behavior may not achieve full efficiency
at the aggregate level has been also known in the literature. Recent research
efforts have focused on quantifying the loss of system performance due to
selfish and uncoordinated behavior. The degree of efficiency loss is defined as
the price of anarchy [17]. The reason why uncoordinated activities of agents
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pursuing their own interests often produce outcomes that all would seek to
avoid is that each agent’s behavior affect the others and these effects are of-
ten not included in whatever optimizing process made by other agents. These
unaccounted effects on others are called network externalities

Socio-economic systems consist of individuals and the socio-economic sys-
tem in which they interact. On the other side, a collective of individuals creates
the socio-economic system of which they are parts. Therefore, the essence of
the socio-economic system is that it is the individuals who are making their
own decisions. We need to cope with the socio-economic system by attempt-
ing to stack the deck in such a way that individuals have selfish incentives to
do what is the desirable thing. Explicit or implicit coordination is necessary
to achieve individuals’ goals more efficiently. However, many aggregate social
outcomes have emergent properties that cannot be trivially derived from the
properties of the members who consist the socio-economic system.

In his book, titled The Wisdom Of Crowds, Surowiecki explores an idea
that has profound implications: a large collection of people are smarter than
an elite few, no matter how they are brilliant and better at solving problems,
fostering innovation, coming to wise decisions, even predicting the future [18].
He explains the wisdom of crowds emerges only under the right conditions:
(1) diversity, (2) independence, (3) decentralization, and (4) aggregation. His
counterintuitive notion, rather than the madness of crowd such as herding,
cascade as traditionally understood [1], suggests new insights for the issue on
how complex social and economic activities should be organized.

This observation derives requirements for a more general model of network
effects. Therefore a new area of research is emerged aiming at explaining the
phenomena of strong positive or negative network effects in markets and their
implications on market coordination and efficiency. However, the assumptions
and simplifications implicitly used for modeling social interaction processes
fail to explain the individual cognitive decision-making process as well as the
network structure. A crucial ingredient in social interaction models is the
network structure in which individuals interact.

Many spheres of social interactions are governed by social norms such
as reciprocity and equity. Social norms are self-enforcing patterns of social
behavior. It is in everyone’s interests to conform given the expectation that
others are going to conform. It is a rule of the action choice that assigns a
rule to each agent that is an optimal in the sense no one has an incentive to
deviate from it. Although social norms can potentially serve useful constructs
to understand human behavior, there is little theory on collective construction
of social norm.

Epstein and Axtell work on the evolutionary process that brings about
norms [8]. They work on the model and discover that, once people got the
norm they are no longer trying to make decisions the way they make them
before there was a norm. Once people have norm they can internalize the
norm, they can remember the norm, and they can teach the norm. If we want
to see whether game theory can be of any help in thinking about which norms
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come about, how they come about, how durable they may be when they come
about, then game theory can help.

We study the collective construction process of social norms as the wisdom
of networked agents. The social space consists of networks of self-interested
agents, continuous evaluations of their performance as well as their behav-
ioral rules. Behavioral rules are here treated as the constraints on individual
action and they specify the action choice based on the specific outcomes. The
learning of new behavioral rule, and the strife of each agent to act in keeping
with the coupling with the neighbors constitute the collective construction of
social norms. Social norms are here treated as the shared behavioral rules that
constitute common constraints on all individuals in a society. For agents in a
social context to achieve collective intelligence, it is a continuous process that
requires social behavior based on social rationality [14]. To in turn achieve
social rationality requires for individually rational behavior to be constrained
by some obligations. We also study collective construction of social norms by
focusing on the relation between micro and macro levels of constraints on the
evolution of socially intelligent behavior.

11.2 Game Theoretic Models of Social Interaction

The interaction structure specifies who affects whom, and this network struc-
ture may vary from one individual to another. Social interdependence can be
understood as a dependence of outcomes of one individual on another indi-
vidual behavior. Such a relationship between payoffs for choices of different
individuals is usually described with the formalism of the game theory.

11.2.1 Coordination Game: Nash Demand Game

We begin by modeling a bargaining process between two agents. Consider
two agents, A and B, each of whom demands some portion of a “pie”, which
we take as a metaphor for a piece of available resources which is divisible.
A way of modeling this bargaining situation is the Nash demand game: each
agent gets his demand if the sum of the two demands is not more than 10;
otherwise each gets nothing. We simply assume that each agent can make just
three possible demands: low (3), medium (5), and high (7). The payoffs (in
share) from all combinations of demands are shown in Table 11.1. This Nash
demand game yields a coordination game in which there are three pure Nash
equilibria: (S1, S3), (S2, S2), and (S3, S1).

Axtell and his colleagues explored which equilibrium emerges at the aggre-
gate level from the repeated pair-wise interactions of self-interested agents [2].
They consider a population of N agents and in each match, one pair of agents
is drawn at random from the, and they play the Nash demand game in Table
11.1. Therefore there is no network effect. Each agent makes a demand that
maximizes her expected payoff (best-response) about the opponent’s behavior,
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which defines the current state of the population. However, with some small
probability, each agent chooses one of the three demands at random. They
showed that the equity norm, corresponding to the equilibrium (S2, S2), and
each agent demand medium has a large basin of attraction. In the terminology
of evolutionary game theory, the equity norm is stochastically stable. Occa-
sional random choices create noise in the evolutional dynamics, which implies
that no state is perfectly absorbing. However, there two regions of the state
space-one equitable, the other fractious-that every persistent: once the process
enters such a region, it tends to stay there for a long period time. Therefore
they showed that the emergence of the equity norm by self-interested agents
is hard in the sense that it takes exponential time to achieve it from some
initial states.

Table 11.1. The payoff matrix of the Nash demand game

AgentB S1 S2 S3

AgentA (High) (Medium) (Low)

S1 0 0 3
(High) 0 0 7

S2 0 5 3
(Medium) 0 5 5

S3 7 5 3
(Low) 3 3 3

11.2.2 Dispersion Game: Generalized-Rock-Scissors Paper Game

The hand game ”Rock-Scissors-Paper (RSP)” is also known as “Janken” in
Japan, has been around the world for a long time. It most often used to solve
small conflicting matters between peoples but it can also be played to decide
larger matters, as part of tournament, our simply as a diversion. The basics
of the game consist of each player shaking a fist a number of times and then
extending the same hand in a fist (“rock”), out flat (“paper”), or with the
index and middle fingers extended (“scissors”).

The RSP game is also important for the study in many ecosystems. Kerr
et al set out to investigate the mechanisms that maintain biodiversity in
ecosystems [10]. Studies of three bacterial strains engaged in an interaction
that mimics the game, rock-scissors-paper, show the importance of localized
interactions in maintaining biodiversity. Kerr and colleagues are not the first
to show that localized interactions of the rock-scissors-paper type can turn a
one winner- outcome into a dynamic coexistence of all three types, endlessly
chasing each other across the board [21].

We consider a population of agents located a lattice network repeatedly
play the generalized RSP games with the payoff matrix in Table 11.2. The
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generalized RSP game in Table 11.2 has the unique Nash equilibrium, and each
strategy, rock, scissors and paper should be selected with the same probability
1/3. The expected payoff of each agent with this mixed Nash equilibrium is
(λ +1)/3. If the parameterλ is greater than 2, the payoff at Nash equilibrium
is asymmetric, and then the problem of the efficiency and fairness and may
arise.

Table 11.2. The payoff matrix of the generalized rock-scissors-paper game (λ ≥ 2)

AgentB S1 S2 S3

AgentA (Rock) (Scissors) (Paper)

S1 1 0 λ
(Rock) 1 λ 0

S2 λ 1 0
(Scissors) 0 1 λ

S3 0 λ 1
(Paper) λ 0 1

11.3 Strategy Choice Based on Learnable Behavioral
Rule

In orthodox rational choice theory, agents are modeled as cognitively sophis-
ticated and entirely self-interested decision makers who evaluate every future
consequence of possible actions and select the action alternative that maxi-
mizes own payoffs. Discrete choice analysis grounded in the theory of utility
maximization has proven quite successful in terms of its usefulness. However,
this approach is being challenged by a line of research originating in cognitive
psychology that is causing economists to re-examine the standard model of
choice behavior [13]. In the words of the psychologist Kahneman, economists
have preferences; psychologists have attitudes [20].

However, experimental evidence supports the view the behavioral rules
are the proximate drivers of most human behavior. The rule-governed ac-
tion can be also pictured as a quasi-legal process of constructing a satisfying
interpretation of the choice situation. The behavioral rules we do use are es-
sentially defensive ones, protecting us from mistakes that perceptual illusions
may induce. However, the question remains as to whether behavioral rules
themselves develop in patterns that are broadly consistent with the rational
model postulates. This is a vital scientific concern. If there are preferences
behind the formation of behavioral rules, then how they are correlated with
these underlying preferences.

We seldom do new things. Most behaviors are repeated, but many re-
searchers do not pay much attention to this aspect. Few would dispute the
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claim that most behaviors are repetitive, yet in spite of a large literature on
learning, the habit concept has received only minor attention. The sort of
coordination problems we have in mind are those that we commonly solve
without thought or discussion-usually so smoothly and effortlessly that we
don’t even notice that there is a coordination problem to be solved.

Verplanken and Aarts define habits as learned sequences of acts that have
become automatic responses to specific cues, and are functional in obtaining
certain goals or end-states [20]. Obviously, many behaviors may fall under
this definition, varying from being very simple to being complex. Habits are
learned sequences of actions. Habits are also automatic responses to specific
cues. Habitual acts are also instigated as immediate responses to specific sit-
uations. These responses occur without purposeful thinking or reflection and
often without any sense of awareness. Most habits are created and maintained
under the influence of learning. For instance, behavioral rule that has positive
consequences is more likely to be repeated, whereas negative consequences
make repetition less likely. Repeated behaviors may turn into habits, which
are automatic responses to specific cues and are functional in obtaining cer-
tain goals. We may want new and desired behaviors to become habits, which
makes them stable and difficult to change. Habituation thus become a behav-
ioral rule.

Social norms and habit influence in turn individuals’ purposive behaviors
based on their current preferences. This bi-directional causal relationship is at
the essence of the study of the cognitive decision-making process. Understand-
ing the nature of the relationship between two different levels at which actual
choice is a grand challenge of cognitive science. Explanation of this relation-
ship calls for examining the types of social interactions that link individuals
in social contexts.

In this paper we propose a hybrid choice model based on both rule-based
choice and preference-based choice as shown in Figure 11.1. Agents adhere to
behavior rules via local adaptation of behavior. The adaptation of behavior
rules consists of an internalization of social norms, or more precisely a syn-
chronization of the individual behavioral rule to those of the other neighbors.
Each agent applies the hybrid choice model based on both agent specific as-
sessments of the situations (rational choice model) and social norms or habits
(rule based choice model). Social norms have been treated here as constraints
on agent-specific rational choices. Each agent is modeled to evolve her behav-
ioral rule. This hybrid choice model at individual levels is the core of emergent
socially intelligent behavior.

We stresses that the performance of the socio-economic system consisting
of self-fish agents depends on how they are properly coupled. A strategy choice
based on the behavioral rule for repeated play of the game uses the recent
history of play to choose one of the three strategies for the next play. Here,
we assume that each agent can refer to the last outcome. Each behavioral rule
is represented as a binary string so that the genetic operators can be applied.
We represent a behavioral rule by a 3-bits string using S1=0, S2=1 and S3=2.
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Fig. 11.1. A hybrid choice model

In order to accomplish this we use a bit string. Since no memory exists at the
start of the game, extra one bit is needed to specify a hypothetical history at
the beginning.

Each position pj , j=1,..,12, in Figure 11.2 represents as follows. The first
position p1encodes the initial strategy that the agent takes at each generation.
A position pj, j = 2, 3, encodes the history of mutual hands (rock, scissors, or
paper) that agent and her opponent took at the previous round. A positionpj ,
j = 4, ., 14, encodes the action that the agent takes corresponding to the
values at the positions pj , j = 2, 3.

There are nine possible outcomes for each round. We can fully describe
a behavioral rule by recording what the strategy will do in each of the nine
different outcomes that arise in the last play of the game. A rule must specify
depending each outcome, what strategy the agent should choose at the net
round. Since there are three strategies, the number of possible behavioral
rules is 39. The hope is that agents would find a better behavioral rule out of
theoverwhelming possible rules after a reasonable number of plays.

Fig. 11.2. An agent’s memory of a behavioral rule
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11.4 Individual Learning vs. Social Learning

To achieve desirable outcomes, a primary question is how each individual
should learn in the context of many learners [22]. There are two competing
approaches for describing the learning model of the population: the micro-
scopic model based on individual learning and the macroscopic model based
on social learning.

In the category of individual learning, agents are modeled to have some
repertories of behavioral rules, and they update those rules using the existing
rules within as shown in Figure 11.3(a). Natural selection operates on the
local probability distribution of behavioral rules within the repertoire of each
individual agent. In an individual learning model, we could say that each agent
checks if another randomly chosen agent in the population gets a higher payoff,
and, if so, switches to that behavior with a probability proportional to the
payoff difference.

There is no imitation or exchange their experiences among agents in in-
dividual learning. On the other hand, social learning becomes valuable in a
social context, since it can help to surface new ideas and generate social con-
sensus on issues that no single individual can effectively make right decision
about alone. Social learning can also be extended beyond the boundaries of a
single agent. Social learning is one that has an internal process for cultivating
individual learning and connecting it to others. So when faced with change,
a collective has the requisite energy and flexibility to move in the direction it
desires.

In an orthodox social learning model as shown in Figure 11.3(b), agents
play based on the prescribed behavioral rules. The summed payoff of each
game provides the agent’s fitness. After every individual has played the game
with her neighbors, each rule of the agents is updated according to the general
evolutionary rules, and the behavioral rule is crossover with the most success-
ful behavioral rule of her neighbors. Their success depends in large part on
how well they learn from their neighbors. If an agent gains more payoff than
her neighbor, there is a chance her behavioral rule will be imitated by others.

The principle of social learning itself can be thought of as the consequence
of any one of three different mechanisms. It could be that the more effective
individuals are more likely to survive and reproduce. A second interpretation
is that agents learn by trial and error, keeping effective rules and altering ones
that turn out poorly. A third interpretation is that agents observe each other,
and those with poor performance tend to imitate the rules of those they see
doing better.

The most unrealistic aspect of the rule learning is the large number of
strategies each agent considers. Even if the set of rules is limited to very sim-
ple ones, each agent remembers to many strategies. A realistic model should
account for the fact that agents consider a much smaller number of rules from
which they learn and make decisions; and that the rules agents consider are
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Fig. 11.3. Individual learning vs. social learning for evolving behavioral rules.

often preconditioned by factors such as imitation that have evolved over the
generations.

11.5 Social Interactions of Networked Agents

A crucial ingredient in social interaction models is the network structure
in which individuals interact. The interaction structure specifies who affects
whom, and this network structure may vary from one individual to another.
The agents involved would learn two things: with whom to interact and how
to behave. That is to say that learning dynamics operates both on network
structure and strategy. The interaction structure specifies who affects whom.

In order to describe the ways of interaction, the random matching model
is frequently used. In the random matching model, in which each agent is
assumed to interact with a randomly chosen agent from the population. There
are also a variety of interaction models, depending on how agents meet, and
what information is revealed before interaction.

There are many situations in which a spatial environment becomes a more
realistic representation, since interactions in real life rarely happen on such
a macro-scale as assumed in the global interaction model. Spatial interaction
is generally modeled through the use of the two dimensional (2D) grid in
Figure 11.4(a) with each agent inhabiting each cell of the lattice on the grid.
Interaction between agents is restricted to nearest neighboring agents. Each
agent chooses an optimal strategy based on local information about what her
neighbors will choose. However, the consequences of their choices may take
some time to have an effect on agents with whom they are not directly linked.

At another end of the spectrum we have models where individuals interact
with both fixed their neighbors and randomly chosen agents from the pop-
ulation. Watts and Storogatz introduced a small-world network architecture
that transforms from a coupled system with nearest neighbors to a randomly
coupled network by rewiring the links between the nodes [21]. For instance,
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consider a two-lattice model in which each node is coupled with its nearest
neighbors, as shown in Figure 11.4(b)(c). If one rewires the links between the
nodes with a small probability, then the local structure of the network remains
nearly intact.

If we fix the interaction structure, we get models of the evolution of strate-
gies in games played on a fixed network structure. An interaction structure
need not be deterministic. In general, it can be thought of as a specification
of the probabilities of interaction with other individuals. By far the most fre-
quently studied interaction structure is one in which the group of individuals
is large and individuals interact at random. That is to say that each indi-
vidual has equal probability of interacting with every other individual in the
population.

Some researchers also concern the impact of different network structures
on equilibrium selection in the context of coordination games. If agents can
choose their partners to interact, then they will form networks that lead to
play of the efficient Nash equilibrium in the underlying coordination game.
Ellison analyzed the role of local interactions for the spread of particular
strategies in coordination games, showing, how play converges to the risk-
dominant equilibrium if agents are located on a circle and interact with their
two nearest neighbors [7]. Similarly, Blume and Kosfel proved the convergence
to the risk-dominant equilibrium in a population of agents located on a two-
dimensional lattice [4][11]. Kuperman and Abramson studied an evolutionary
version of the prisoner’s dilemma game, played by agents placed in a small-
world network [12]. Agents are able to change their strategy, imitating that
of the most successful neighbor. They found that collective behaviors corre-
sponding to the small-world network enhances defection where cooperation is
the norm in the fixed regular network.

Ultimate interest resides in the general case where structure and strategy
co-evolve. These may be modified by the same or different kinds of learn-
ing. They may proceed at the same rate or different rates. The case where
structure dynamics is slow and strategy dynamics is fast may approximate
more familiar models where strategies evolve on a fixed interaction structure.
Whether co-evolution of structure and strategy supports or reverses the con-
ventional wisdom about equilibrium selection in this game, depends on the
nature and relative rates of the two learning processes.

11.6 Simulation Results

11.6.1 Nash Demand Game

Figure 11.5 shows (i) the average payoff per agent and (ii) the ratio of each
strategy over generation when each agent repeatedly plays the Nash demand
game with the payoff matrix in Table 11.1. After the 12 generation, the average
payoff is increased to 5, and every agent chooses S2 (medium). Many spheres
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Fig. 11.4. Social interactions of networked agents. (a) p = 0, a regular lattice. (b)
p= 0.1, some of the links have been re-wired resulting in a small–world network.
(c) p = 0.5, additional re-wiring has occurred. As p approaches 1, a transition to a
random network will occur.

of social interactions are governed by social norms such equity. In this case,
the efficient and equity norm is emerged over the networked agents.

(a) The average payoff per agent (b) the ratio of each strategy

Fig. 11.5. Simulation results of Nash demand games

11.6.2 Generalized RSP Games

We simulated several cases by changing the parameter value ofλ. We also
consider the effect of implementation error. That is, there is small probability
of choosing the different strategy from the one specified by the rule. Signifi-
cant differences will be observed when agents have small chances of making
mistakes.

(Case 1) λ = 2: Figure 11.6 shows (i) the average payoff per agent and (ii)
the ratio of each strategy over generation when we set λ = 2in Table 11.2. All
agents receive the same average payoff if λ=2 by choosing S2 (scissors).
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(a) The average payoff per agent (b) The ratio of each strategi

Fig. 11.6. Simulation results with λ = 2

(a) The average payoff per agent (b) The ratio of each strategi

Fig. 11.7. Simulation results with λ = 10 implementation error: 10%

(Case 2) λ = 10. We now investigate the strategic situation by increasing
the payoff of winning the game by setting λ=10 in Table 11.3. Figure 11.7
shows the simulation results with the implementation error of 10%. Figure
11.7(a) shows the payoff per agent at each generation. The average payoff per
agent is approximately 3.9, which is higher than the expected payoff at Nash
equilibrium, which is approximately 3.7. Figure 11.7(b) shows the strategy dis-
tribution, and which eventually converges to the same distribution with Nash
equilibrium. In the beginning, 400 different coupling rules were aggregated
into three types, as shown in Table 11.3.

The game between two agents who play with the behavioral rules can
be described as a stationary stochastic process. The state transition of the
outcomes when both agents choose their strategies according to the same
coupling rule of type 1 is illustrated in Figure 11.8 as the state transition
diagram.

(Case 1) Agents who have the same behavioral rule:
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The strategy choices between two agents with the same coupling rule type
i, i = 1,2,.., 8, are shown in Figure 11.8(a). In this figure, there is one absorbing
state at “22” and one limiting cycle. The state diagram contains two paths,
one for moving towards to the absorbing state and one for the limiting cycle,
and there is no path between the two cycles. As shown in Table 11.3, agents
also learn to initiate the play by choosing “paper (2)” and strategy choices
eventually converge to “22”. This means that if an agent plays with other
agents of the same rule, they converge to the state of a tie, and receive the
lower payoff of 1.

(Case 2) Agents who have the different behavioral rules:
We now investigate the state diagrams of plays by two agents who have

different coupling rules in Table 11.3. The state diagram is shown in Figure
11.8(b). If the system were to start from the set of the states, it would evolve
to an attractor. These are known as the basin of attraction. In this case, the
point attractor for the state of the systems is replaced by a circle, and in the
limit, the system moves endlessly around this circle. Starting from any state,
it eventually converges to an efficient cycle such that agents win three times
and lose three times.

In the framework of the hybrid choice model as shown in Figure 11.1,
agents, facing different social contexts, are assumed to choose their actions
randomly with some small probability. In this simulation, we simply assume
that agents have a chance to choose the other strategy from the strategy
specified by rule. We model this process by introducing some mistakes or
implementation errors.

(a) Agents who have the same behav-
ioral rules

(b) Agents who have the different be-
havioral rules

Fig. 11.8. The state diagram of play between two agents
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With some mistakes, some interesting properties emerge. If an agent A
chooses rock (0) and her opponent Bchooses “scissors (1)” (in this case she
wins and her opponent loses), then in the next round agent A chooses “scissors
(1)” and agent Bchooses “paper (2)”. In the following round agent Achooses
“paper (2)” and agent B chooses “rock (0)”. Therefore, agent Awins three
times and agent B loses three times. However, after these games, the two
agents completely reverse roles, and the winning agent thus far, agent A,
chooses “scissors (1)” and the losing agent thus far, agent B, chooses “rock
(0)”. After these three one-sided games, they trade places. The winner thus far
chooses “scissors (1)” and loser thus far chooses “rock (0)”. The winner then
becomes the loser, and vice versa. In total, her opponent wins three times.
Both agents are eventually absorbed into the limit cycle of the three-wins
and three-losses. Thus far, this agent wins three times and her opponent loses
three times. Therefore, the two agents switch roles as winner and loser. Since
both agents win three times and lose three times, on the average, they gain
the payoff at Pareto-efficiency.

Table 11.3. Learnt behavioral rules by 400 agents

Rule Initial Strategy site Number of
type Strategy agents

1 2 3 4 5 6 7 8 9 10

1 2 0 1 0 2 0 2 1 0 0 149

2 2 2 1 0 2 0 2 1 0 0 102

3 2 0 1 0 2 2 2 1 0 0 58

4 2 2 1 0 2 2 2 1 0 0 41

5 2 2 1 0 2 0 2 1 0 2 20

6 2 0 1 0 2 0 2 1 0 2 15

7 2 0 1 0 2 2 2 1 0 2 9

8 2 2 1 0 2 2 2 1 0 2 6

11.7 Social Norms Emerged over Networked Agents

Many laboratory experiments and field observations indicate that humans are
social animals who take a strong interest in the effects of their actions on
others and whose behavior is not always explained by simple models of selfish
behavior. Reciprocity and the presence of other social norms can support a
great deal of social intelligent behavior [14]. The simulation results in the
previous section implicate that we have a tools for examination how social
norms evolve in a society that begins in an amorphous state where there is
no established common behavioral rules and individuals only rely on hearsay
to determine what to do.
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We discussed how desirable social norms emerge in a society of interacting
agents. Especially, we investigate the conditions under which the norm will
emerge and dominate in various social setting, and discuss the importance of
collective norm construction for evolving and sustaining a desirable society of
efficiency and equity. After collective construction of social norms, there is no
need to assume a rational calculation to identify the effective behavioral rule.
Instead, the analysis of what is chosen at any specific time is based upon an
implementation of the idea that effective behavioral rules are more likely to
be retained than ineffective ones.

Epstein and Axtell extended the literature on the evolution of norms with
an agent-based model [8]. In their model, agents learn how to behave (what
norm to adopt), but they also learn how much to think about how to behave.
The point of their model is that many social norms or conventions have two
features of interest. First, they are self-enforcing behavioral regularities. But
second, once entrenched, we conform without thinking about it. Indeed, this
is one reason why social norms are useful; they obviate the need for a lot of
individual computing.

The asymmetry in payoffs from interaction induces agents to learn the
behavioral rule that breaks the asymmetry. Hanaki used adaptive models to
understand the dynamics that lead to efficient and fair outcomes in a repeated
battle of the sexes game [9]. He develops a model that not only uses rein-
forcement learning but also the evolutionary learning that operates through
evolutionary selection. He found that the efficient and fair outcome emerges
relatively quickly through turn taking. However, his model requires a long
run pre-experimental phase before it is ready to take turn. Turn taking in the
battle of the sexes game is just one of many game theoretic phenomena, and
it raises an important general point for further studies.

Browning and Colman also investigated how coordinated, alternating co-
operation can evolve without any communication between agents who play
battle of the sexes game [5]. They study the nature, properties and phenom-
ena of coordinated alternating cooperation in a range of dispersion games with
asymmetric equilibria. By alternating coordination the agents benefit from it,
however, how agents evolves alternating coordination without communication
is not fully explained.

We consider the generalized RSP game in which favourable payoffs are
possible only if one agent acts one way while the other acts the opposite way.
To coordinate successfully, the agents have to alternate or take turns, out of
phase with each other. If this type of social interaction is repeated, the agents
benefit by coordinated alternation by taking turns in choosing one of the three
strategies and there is evidence to show that this type of turn-taking occurs
quite commonly in nature. Give-and-take is a strategy that is intuitive and
simple, but even so it is beyond the scope of most traditional learning models
[15]
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11.8 Conclusion

Networks of evolving agent are likely to foster social interactions where in-
dividual self-interest is consistent with behavior that maximizes the social
welfare. Social interaction in such network structure is best modeled as a re-
peated game. In repeated games, where an agent’s actions can be observed
and remembered by other agents, almost any pattern of individual behavior,
including behavior that maximizes the collective payoff, can be sustained by
social norms that include obligations to punish norm violations by others.
Where many equilibria are possible, collective construction of social norms
is likely to play a major role in determining Pareto-efficient equilibrium will
obtain.

We analyzed the emergence of socially intelligent behavior when evolving
agents are networked in social spaces. Our problem is to explain how such
socially intelligent behaviour could have evolved, given that natural selection
operates at the individual level. The framework of collective evolution distin-
guishes from the concept of co-evolution in three aspects. First, there is the
coupling rule: a deterministic process that links past outcomes with future
behavior. The second aspect, which is distinguished from individual learning,
is that agents may wish to optimize the outcome of the joint actions. The
third aspect is to describe how a coupling rule should be improved with the
criterion of performance to evaluate how the rule is doing well.

The performance assessment at the individual levels gradually evolves, in
order for the agent to act in accordance with the behaviors of her neighbors.
Social norms are not merely the union of the local behavioral rules of all
agents, but rather evolve interactively, as do the local behavioral rules of the
agents. In an evolutionary approach, there is no need to assume a rational
calculation to identify the best behavioral rule. Instead, the analysis of what
is chosen at any specific time is based upon an implementation of the idea
that effective behavioral rules are more likely to be retained than ineffective
ones.
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12.1 Introduction

Both micro level investor behavior as well as macro level stock market dy-
namics are research fields that are full of “puzzles” or unresolved research
questions and therefore enjoy a strong interest of scholars and practitioners
alike. On a micro level, aberrances in individual investor behavior are the sub-
ject of intense debate in e.g., behavioral finance (for an introductory overview
of the field, see e.g. Nofsinger 2002; Schleifer 2000; Shefrin 2002; Shiller 2005).
On a macro level, the absence of (linear) autocorrelation, and the occurrence
of fat tails and volatility clustering in asset returns distributions are often
studied stylized facts (Cont 2001).

Methodologically, there is a great heterogeneity in the techniques used to
solve the above-mentioned puzzles. Surveys, case studies, laboratory experi-
ments, and a plethora of statistical analysis are amongst the many methods
that are used in this field. A relatively recent development in finance is the
use of multi-agent simulation models as a research method (LeBaron 2000,
2005). The usage of multi-agent simulation models allows researchers both to
make a coupling between the before identified micro and macro levels and to
get a better understanding of the complexity that is often experienced in this
field.

Investor behavior and related stock market dynamics are fields par excel-
lence to observe complexity. Often, macro level outcomes, such as crashes and
bubbles, “emerge”. Interaction and nonlinearity in the micro level behavior
of actors may cause these emergent phenomena. Small changes in the initial
situation of a model or in the behavior of one or several interacting actors may
lead to completely different outcomes on a macro level. Social simulation is
a particularly appropriate tool in helping to explain the interactions between
the micro and macro level of this complex behavior.
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12.2 Background

A first step when using multi-agent simulation research to solve puzzles in
finance is to formalize a limited number of micro level agent rules that, in the
ideal situation, represent empirically found characteristics of investors’ behav-
ior. A population of investor agents is generated by the simulation model and
these agents are provided with these rules. Subsequently, a number of simula-
tion experiments are performed and finally, the macro level results (often in
the form of stock price or returns time series) of these simulation experiments
are compared with data from real stock markets in order to see to what extent
real-life stylized facts are replicated.

In this paper, we continue the line of research of Hoffmann, Delre, Von
Eije, & Jager (2005). In that paper, the need to incorporate theories of social
needs, social interactions and social networks of investors in finance research
- as first introduced in Hoffmann and Jager (2005) - was argued for. The
objective of the research program is to identify critical micro level factors that
drive investors’ behavior and to explain complex macro level phenomena that
result from the aggregation and interaction of micro level investor behavior.
An adapted version of the model of Day & Huang (1990) is explored, which
can be seen as a simple nonlinear dynamical system. The power of this simple
model resides in the fact that simple agent rules are able to generate non-linear
dynamics like stock market price and returns time series. Without any news,
e.g., in the form of noise, this model is able to capture a number of stylized
facts that are often observed in financial markets, like volatility clustering.
The interactions between fundamental and trend following agents alone is
enough to generate these complex outcomes. In the next section, the model
will be briefly described.

12.3 The Simulation Model

In the model, investors can follow either a more fundamentally based “ratio-
nal” strategy (called the α-strategy) or a more socially based trend following
strategy (called the β-strategy). The α-strategy is based on a comparison be-
tween the current market price p and a given long-run investment value u.
Whenever the market price is below the long-run investment value, the α-
investor buys. Whenever the market price is above the long-run investment
value, the α-investor sells. When the market price equals the long-run invest-
ment value, the α-investor holds. This behavior is limited by a topping price
M (set at 1.0) and a bottoming price m (set at 0.0). The β-strategy, on the
other hand, suggests more socially oriented behavior. β-investors buy when
they expect an upward price trend (whenever the current price p is above a
given current fundamental value v) and sell when they expect a downward
price trend (whenever p is below v).
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The extent to which investors follow an α-strategy or a β-strategy is
weighted by the parameter Si that represents the social susceptibility of an in-
vestor i. Stock markets and stocks alike may differ to the extent that investors
focus more on fundamental characteristics of a share like price/earnings ratios
and beta’s, or focus more on social aspects of a share like information about
which shares friends, colleagues or prominent finance experts buy. Investors
may change their S given the circumstances, which leads to dynamism in the
strategies they use.

The above can be formalized in the following simple formula for total
excess demand:

Ei(p) = (1 − Si) ∗ (u − p) + Si ∗ (p − v) (12.1)

At each time step, the price will rise when there is a positive excess demand
and the price will fall when there is a negative excess demand 1. The price is
calculated as:

pt+1 =

{
Ei(pt) > 0 → |Ei(pt)| + pt ∗ (1 − |Ei(pt)|)
otherwise → pt ∗ (1 − |Ei(pt)|) (12.2)

Following Day and Huang (1990), we assume α and β strategies to be indi-
vidual strategies. Therefore, the excess demand is also an individual indicator
of how much a single investor wants to buy or to sell. However, this leads to
the problem that the total excess demand, E(p) can overpass the boundary
conditions 0.0 and 1.0.

E(p) =
∑n

i=0
Ei(p) (12.3)

This leads to explosive price developments and a very limited parameter
space for which useful price time series can be studied. We bounded the to-
tal excess demand between 0.0 and 1.0 using an exponential transformation
(12.4).

E(p) = 1 − γ · exp(−|
∑n

i=0
Ei(p) (12.4)

Here γ represents how strongly the market reacts to investors’ actions.
This parameter γ is comparable to the price adjustment coefficient c as used
by Day and Huang (1990).

On the individual level, the behavior of the investors is driven by the
parameter S. However, the behavior of investors is not the same in all cir-
cumstances. Investors can change their S according to their feelings and their
fears (12.5). We formalize the changes in S as a combination of the agent’s
confidence coming from previous returns and fear coming from the deviation
of the price from the fundamental value. The returns are derived from an es-
timation of how good individual investor agents have forecasted the price for

1 This is a common way of updating the price, see e.g. Cont & Bouchaud (2000).
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the next period, better forecasts implying superior returns (12.6). Investors
with higher returns are expected to feel more confident. The more the current
price deviates from the fundamental value, the higher the fear of investors that
the stock price developments will reverse, possibly leading to losses for these
investors. Therefore, at certain moments in time, trend following investors
may decide to return to a more “rational” or fundamental’s based strategy.
This adaptation of the model (the addition of a switching mechanism in the
investors’ strategy) also addresses the weak point of the standard model as
identified in Hoffmann et al. (2005) and more generally in Arthur (1995). This
was that the market dynamics are generated by the actions of the investors,
but the cognition of the investors is never affected by the evolution of the
market.

Si = 1 − (confidencei ∗ fear)i (12.5)

confidencei = 1 − exp(−returnsi) (12.6)

feari = exp(
−(pt − v)2

δ
(12.7)

returnsi =
1

(pt − pforecasted)2
(12.8)

It should be noticed, that the only parameter that is introduced in compar-
ison to the previous version of the model is δ. This is the individual tendency
of investors to be afraid. When this tendency is higher, investors will more
quickly develop feelings of fear in case the current price deviates from the
fundamental value. We interpret this parameter as the speed of investors’ re-
action to changes in the price relative to the fundamental value. We fix δ for
every investors or we distribute it uniformly (e.g., δ=[0.0, 1.0]). In the next
section, a number of preliminary results - both with and without the switching
mechanism - are discussed.

12.4 Results

In the first experiment, the influence of changing levels of trend following
versus fundamental investors on the stock market dynamics is investigated.

In experiment 1.1, the level of trend following investors is uniformly dis-
tributed between 0.10 and 0.12, resulting in an average level of trend following
investors of 0.11.

In experiment 1.2, the level of trend following investors is uniformly dis-
tributed between 0.1 and 0.5, resulting in an average level of trend following
investors of 0.3.
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In both experiments, the starting price p is 0.501, the long run investment
value u and the current fundamental value v are both 0.500, and there are
100 investing agents.

The results of 500 time steps were studied 2 and it was found that with
lower proportions of trend following investors (as in experiment 1.1), the stan-
dard deviation of returns is much smaller than with larger proportions of
trend following investors (as in experiment 1.2). This result indicates that
social interaction amongst investors may lead to an increasing level of stock
market volatility, as measured by the standard deviation of the returns. This
is intuitive in the sense that if an increasing number of investors rely on a
social strategy to make their investment decisions, it becomes more likely
that herding behavior, the corresponding stock price inflation, and increased
stock market volatility occurs. Moreover, this result confirms the results of
the earlier study by Hoffmann et al. (2005).

In fig. 12.1 and 12.2, the returns time series of experiments 1.1 and 1.2,
respectively, are plotted.

Fig. 12.1. Returns time series from experiment 1.1

In the second experiment, the influence of two different levels of the pa-
rameter δ on the stock market returns was studied. In both experiments, the
initial proportion of trend following investors is 0.11, the starting price p is
0.501, the long run investment value u and the current fundamental value
v are both 0.500, and there are 100 investor agents. For 500 time steps, the
results were studied. In experiment 2.1, the value of δ is 0.5 and in experiment
2.2, the value of δ is 1.0.

2 As a robustness check, for every simulation experiment, at least 20 runs were
performed with different initial conditions.
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Fig. 12.2. Returns time series from experiment 1.2

It was found that when investors have a higher initial individual tendency
to become afraid (indicated by a higher level of δ), the risk of previous pe-
riods becomes less important for the risk of today, as measured by ARCH 3

and GARCH 4 effects. The ARCH term represents the lagged squared error,
while the GARCH term represents the lagged conditional variance. In tables
12.1 and 12.2, the ARCH and GARCH effects are displayed in the conditional
variance equations for experiment 2.1 and 2.2, respectively. When investors
react more fiercely to deviations of the current price from the current fun-
damental value, and therefore switch more easily from a trend following to
a more fundamental or “rational” strategy, the stock markets become more
stable, in the sense that there is less volatility clustering. So, the fear of future
losses might limit the current stock market volatility.

In the third experiment, the returns for each individual agent in the agent
population as aggregated over the 500 time steps of the simulation were calcu-
lated using formula refeq:hofeq8, resulting in 100 observations (one for each
agent). Also, for each agent, the level of S was recorded. Scatter plots of the
relationship between the level of S and the returns were made for two situa-
tions; a situation with a lower average level of S and a situation with a higher
average level of S. In experiment 3.1, S was set as a uniform distribution be-
tween 0.01 and 0.21, resulting in an average level of S of 0.11. In experiment
3.2, S was set as a uniform distribution between 0.1 and 0.5, resulting in an
average level of S of 0.3. This experimental design leads to the observation of
the following phenomenon.

3 ARCH is the test for conditional heteroscedasticity as developed by Engle(1982).

4 GARCH is the generalized model for conditional heteroscedasticity as developed
independently by Bollerslev(1986) and Taylor(1986).
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Table 12.1. Conditional variance equation of experiment 2.1

Table 12.2. Conditional variance equation of experiment 2.2

In stock markets that are dominated by “rational” investors using a fun-
damental strategy as in experiment 3.1, investors with higher levels of S have
higher returns than investors with lower levels of S. So, in these markets it is
beneficial to be a trend following investor, and these investors can be said to
be “free-riding” on the fundamental investors. In figure 12.3, this relationship
is plotted.

However, in markets with a higher average level of trend following in-
vestors, as in experiment 3.2, a more complex pattern emerges. In these mar-
kets, the relationship between the level of S and the individual returns follows
a U-shape, as can be seen in figure 12.4. Investors with relatively low levels
of S have high returns, and so do investors with relatively high levels of S.
Investors with intermediate levels of S are proverbially “stuck in the middle”,
as they earn lower returns than these other two groups of investors. So, in this
market an investor should either be a pronounced “rational” investor follow-
ing a fundamental strategy or a pronounced trend following investor in order
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to obtain high returns. Overall, the returns are higher in experiment 3.2 than
in experiment 3.1.

Fig. 12.3. The relationship between S and the individual returns for experiment
3.1

12.5 Conclusions

In this paper, it was shown how a relatively simple simulation model with
simple micro level agent rules is capable of generating complex macro level
outcomes. These outcomes of the simulation model, in the form of the returns
time series, show a number of stylized facts that can also be observed in
real returns time series. So, there is a qualitative resemblance between the
model and the reality. However, due to e.g., the oversimplified nature of the
simulation model, a quantitative gap between the results of the model and
real returns time series remains.

In order to tighten or close this gap, it is necessary to radically rethink and
restructure the current model in specific and the way artificial stock markets
are built in general. This rethinking and restructuring may take the form of
the research approach as it will be presented in one of our articles that is
currently in preparation (Hoffmann, Jager & Von Eije 2006).

In general, this approach consists of four critical steps, that together con-
stitute a complete empirical circle. Micro level agent rules are formalized based
on empirical research, social interactions amongst micro level investor agents
lead to macro level simulation results, macro level simulation results are sub-
sequently compared to macro level real stock market results, and eventually
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Fig. 12.4. The relationship between S and the individual returns for experiment
3.2

the simulation model can be adapted according to the results of this compari-
son. The final objective is to build a level 3 model of a stock market as defined
by Axtell and Epstein (1994).
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Summary. Financial markets are subject to long periods of polarized behavior,
such as bull-market or bear-market phases, in which the vast majority of market
participants seem to almost exclusively choose one action (between buying or sell-
ing) over the other. From the point of view of conventional economic theory, such
events are thought to reflect the arrival of “external news” that justifies the observed
behavior. However, empirical observations of the events leading up to such market
phases, as well events occurring during the lifetime of such a phase, have often failed
to find significant correlation between news from outside the market and the behav-
ior of the agents comprising the market. In this paper, we explore the alternative
hypothesis that the occurrence of such market polarizations are due to interactions
amongst the agents in the market, and not due to any influence external to it. In
particular, we present a model where the market (i.e., the aggregate behavior of all
the agents) is observed to become polarized even though individual agents regularly
change their actions (buy or sell) on a time-scale much shorter than that of the
market polarization phase.

13.1 Introduction

The past decade has seen an influx of ideas and techniques from physics into
economics and other social sciences, prompting some to dub this new interdis-
ciplinary venture as “econophysics” [1]. However, it is not just physicists who
have migrated to working on problems in such non-traditional areas; social
scientists have also started to use tools from, e.g., statistical mechanics, for
understanding various socioeconomic phenomena as the outcomes of interac-
tions between agents, which may represent individuals, firms or nations (see
for example, Ref. [2]). The behavior of financial markets, in particular, has
become a focus of this kind of multidisciplinary research, partly because of
the large amount of empirical data available for such systems. This makes it
possible to construct quantitatively predictive theories for such systems, and
their subsequent validation.
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Analysis of the empirical data from different financial markets has led to
the discovery of several stylized facts, i.e., features that are relatively invariant
with respect to the particular market under study. For example, it seems to
be the case that markets (regardless of their stage of development) show much
stronger fluctuations than would be expected from a purely Gaussian process
[3, 4]. Another phenomenon that has been widely reported in financial markets
is the existence of polarized phases, when the majority of market participants
seem to opt exclusively to buy rather than sell (or vice versa) for prolonged
periods. Such bull-market (or bear-market) phases, when the market exhibits
excess demand (or supply) relative to the market equilibrium state, where the
demand and supply are assumed to balance each other, are quite common
and may be of substantial duration. Such events are less spectacular than
episodes of speculative bubbles and crashes [5], which occur over a relatively
faster time-scale; however, their impact on the general economic development
of nations maybe quite significant, partly because of their prolonged nature.
Hence, it is important to understand the reasons for occurrence of such market
polarizations.

Conventional economic theory seeks to explain such events as reflections
of news external to the market. If it is indeed true that particular episodes of
market polarizations can only be understood as responses to specific historical
contingencies, then it should be possible to identify the significant historical
events that precipitated each polarized phase. However, although a posteriori
explanation of any particular event is always possible, there does not seem to
be any general explanation for such events in terms of extra-market variables,
especially one that can be used to predict future market phases.

In contrast to this preceding approach, one can view the market behavior
entirely as an emergent outcome of the interactions between the agents com-
prising the market. While external factors may indeed influence the actions of
such agents, and hence the market, they are no longer the main determinants
of market dynamics, and it should be possible to observe the various “stylized
facts” even in the absence of news from outside the market. In this explana-
tory framework, the occurrence of market polarization can be understood in
terms of time evolution of the collective action of agents. It is important to
note here that the individual agents are assumed to exercise their free will
in choosing their particular course of action (i.e., whether to buy or sell).
However, in any real-life situation, an agent’s action is also determined by the
information it has access to about the possible consequences of the alterna-
tive choices available to it. In a free market economy, devoid of any central
coordinating authority, the personal information available to each agent may
be different. Thus the emergence of market behavior, which is a reflection of
the collective action of agents, can be viewed as a self-organized coordination
phenomenon in a system of heterogeneous entities.

The simplest model of collective action is one where the action of each
agent is completely independent of the others; in other words, agents choose
from the available alternatives at random. In the case of binary choice, where
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only two options are available to each agent, it is easy to see that the emergence
of collective action is equivalent to a random walk on a one-dimensional line,
with the number of steps equal to the number of agents. Therefore, the result
will be a Gaussian distribution, with the most probable outcome being an
equal number of agents choosing each alternative. As a result, for most of
the time the market will be balanced, with neither excess demand nor supply.
As already mentioned, while this would indeed be expected in the idealised
situation of conventional economic theory, it is contrary to observations in
real life indicating strongly polarized collective behavior among agents in a
market. In these cases, a significant majority of agents choose one alternative
over another, resulting in the market being either in a buying or selling phase.
Examples of such strong bimodal behavior has been also observed in contexts
other than financial markets, e.g., in the distribution of opening gross income
for movies released in theaters across the USA [6].

The polarization of collective action suggests that the agents do not choose
their course of action completely independently, but are influenced by neigh-
boring agents. In addition, their personal information may change over time
as a result of the outcome of their previous choices, e.g., whether or not their
choice of action agreed with that of the majority 3. This latter effect is an
example of global feedback process that we think is crucial for the polarization
of the collective action of agents, and hence, the market.

In this paper, we propose a model for the dynamics of market behavior
which takes into account these different effects in the decision process of an
agent choosing between two alternatives (e.g., buy or sell) at any given time
instant. We observe a phase transition in the market behavior from an equi-
librium state to a far-from-equilibrium state characterized by either excess
demand or excess supply under various conditions. However, most strikingly,
we observe that the transition to polarized market states occurs when an
agent learns to adjust its action according to whether or not its previous
choice accorded with that of the majority. One of the striking consequences of
this global feedback is that, although individual agents continue to regularly
switch between the alternatives available to it, the duration of the polarized
phase (during which the collective action is dominated by one of the alter-
natives) can become extremely long. The rest of the paper is organized as
follows. In the next section, we give a detailed description of the model, fol-
lowed in the subsequent section by a summary of the results. We conclude
with a discussion of possible extensions of the model and implications of our
results. For further details please refer to Ref. [8].

3 This would be the case if, as in Keynes’ “beauty contest” analogy for the stock
market, agents are more interested in foreseeing how the general public will value
certain investments in the immediate future, rather than the long-term probable
yields of these investments based on their fundamental value [7].
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Fig. 13.1. An abstract model of a market. Each agent interacts (interactions indi-
cated by arrows) with a subset of the other agents comprising the market, indicated
by the boundary formed from the broken lines. The combined action of all agents
results in the overall state of the market. The news of this state is available to all
agents, although the information about the individual actions of all agents may not
be accessible to any one agent.

13.2 The Model

In this section we present a general model of collective action that shows how
polarization in the presence of individual choice volatility can be achieved
through adaptation and learning. We assume that individual agents behave
in a rational manner, where rationality is identified with actions that would
result in market equilibrium in the absence of interaction between agents.
Therefore, for a large ensemble of such non-interacting agents we will observe
only small fluctuations about the equilibrium. Here we explore how the situa-
tion alters when agents are allowed to interact with each other. In our model,
the market behavior reflects the collective action of many interacting agents,
each deciding to buy or sell based on limited information available to it about
the consequences of such action. An example of such limited information avail-
able to an agent is news of the overall market sentiment as reflected in market
indices such as S & P 500. A schematic diagram of the various influences
acting in the market is shown in Fig. 13.1.

Our model is defined as follows. Consider a population of N agents, whose
actions are subject to bounded rationality, i.e., they either buy or sell an asset
based on information about the action of their neighboring agents and how
successful their previous actions were. The fundamental value of the asset is
assumed to be unchanged throughout the period. In addition, the agents are
assumed to have limited resources, so that they cannot continue to buy or sell
indefinitely. However, instead of introducing explicit budget constraints [9], we
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have implemented gradually diminishing returns for a decision that is taken re-
peatedly. This is akin to the belief adaptation process in the Weisbuch-Stauffer
model of social percolation [10], where making similar choices in successive
periods decreases the probability of making the same choice in the subsequent
period.

At any given time t, the state of an agent i is fully described by two
variables: its choice, St

i , and its belief about the outcome of the choice, θt
i .

The choice can be either buy (= +1) or sell (= −1), while the belief can
vary continuously over a range (initially, it is chosen from a uniform random
distribution). At each time step, every agent considers the average choice of
its neighbors at the previous instant, and if this exceeds its belief, then it
makes the same choice; otherwise, it makes the opposite choice. Then, for the
i-th agent, the choice dynamics is described by:

St+1
i = sign(Σj∈NJijS

t
j − θt

i), (13.1)

where N is the set of neighbors of agent i (i = 1, . . . , N), and sign (z) = +1,
if z > 0, and = −1, otherwise. The degree of interaction among neighboring
agents, Jij , is assumed to be a constant (= 1) for simplicity and normalized
by z (= |N |), the number of neighbors. In a lattice, N is the set of spatial
nearest neighbors and z is the coordination number, while in the mean field
approximation, N is the set of all other agents in the system and z = N − 1.

The individual belief, θ evolves over time as:

θt+1
i =

{
θt

i + μSt+1
i + λSt

i , if St
i �= sign(M t),

θt
i + μSt+1

i , otherwise,
(13.2)

where M t = (1/N)ΣjS
t
j is the fractional excess demand and describes the

overall state of the market at any given time t. The adaptation rate μ governs
the time-scale of diminishing returns, over which the agent switches from
one choice to another in the absence of any interactions between agents. The
learning rate λ controls the process by which an agent’s belief is modified when
its action does not agree with that of the majority at the previous instant.
As mentioned earlier, the desirability of a particular choice is assumed to be
related to the fraction of the community choosing it. Hence, at any given time,
every agent is trying to coordinate its choice with that of the majority. Note
that, for μ = 0, λ = 0, the model reduces to the well-known zero-temperature,
random field Ising model (RFIM) of statistical physics.

We have also considered a 3-state model, where, in addition to ±1, St
i has

a third state, 0, which corresponds to the agent choosing neither to buy nor
sell. The corresponding choice dynamics, Eq. (13.1), is suitably modified by
introducing a threshold, with the choice variable taking a finite value only if
the magnitude of the difference between the average choice of its neighbors
and its belief exceeds this threshold. This is possibly a more realistic model of
markets where an agent may choose not to trade, rather than making a choice
only between buying or selling. However, as the results are qualitatively almost
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identical to the 2-state model introduced before, in the following section we
shall confine our discussion to the latter model only.

13.3 Results

In this section, we report the main results of the 2-state model introduced in
the preceding section. As the connection topology of the contact network of
agents is not known, we consider both the case where the agents are connected
to each other at random, as well as, the case where agents are connected only
to agents who are located at spatially neighboring locations. Both situations
are idealised, and in reality is likely to be somewhere in between. However, it
is significant that in both of these very different situations we observe mar-
ket polarization phases which are of much longer duration compared to the
timescale at which the individual agents switch their choice state (S).

13.3.1 Random Network of Agents and the Mean Field Model

We choose the z neighbors of an agent at random from the N −1 other agents
in the system. We also assume this randomness to be “annealed”, i.e., the next
time the same agent interacts with z other agents, they are chosen at random
anew. Thus, by ignoring spatial correlations, a mean field approximation is
achieved.

For z = N −1, i.e., when every agent has the information about the entire
system, it is easy to see that, in the absence of learning (λ = 0), the collective
decision M follows the evolution equation rule:

M t+1 = sign[(1 − μ)M t − μΣt−1
τ=1M

τ ]. (13.3)

For 0 < μ < 1, the system alternates between the states M = ±1 (i.e.,
every agent is a buyer, or every agent is a seller) with a period ∼ 4/μ. The
residence time at any one state (∼ 2/μ) increases with decreasing μ, and
for μ = 0, the system remains fixed at one of the states corresponding to
M = ±1, as expected from RFIM results. At μ = 1, the system remains in
the market equilibrium state (i.e., M = 0). Therefore, we see a transition from
a bimodal distribution of the fractional excess demand, M , with peaks at non-
zero values, to an unimodal distribution of M centered about 0, at μc = 1.
When we introduce learning, so that λ > 0, the agents try to coordinate with
each other and at the limit λ → ∞ it is easy to see that Si = sign(M) for
all i, so that all the agents make identical choice. In the simulations, we note
that the bimodal distribution is recovered for μ = 1 when λ ≥ 1.

For finite values of z, the population is no longer “well-mixed” and the
mean-field approximation becomes less accurate the lower z is. For z << N ,
the critical value of μ at which the transition from a bimodal to a unimodal
distribution occurs in the absence of learning, μc < 1. For example, μc = 0
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for z = 2, while it is 3/4 for z = 4. As z increases, μc quickly converges to
the mean-field value, μc = 1. On introducing learning (λ > 0) for μ > μc, we
again notice a transition to a state corresponding to all agents being buyers
(or all agents being sellers), with more and more agents coordinating their
choice.

13.3.2 Agents on a Spatial Lattice

To implement the model when the neighbors are spatially related, we con-
sider d-dimensional lattices (d = 1, 2, 3) and study the dynamics numerically.
We report results obtained in systems with absorbing boundary conditions;
using periodic boundary conditions leads to minor changes but the overall
qualitative results remain the same.

In the absence of learning (λ = 0), starting from an initial random distri-
bution of choices and beliefs, we observe only very small clusters of similar
choice behavior and the fractional excess demand, M , fluctuates around 0. In
other words, at any given time an equal number of agents (on average) make
opposite choices so that the demand and supply are balanced. In fact, the
most stable state under this condition is one where neighboring agents in the
lattice make opposite choices. This manifests itself as a checkerboard pattern
in simulations carried out in one- and two-dimensional square lattices (see e.g.,
Fig. 13.2, top left). Introduction of learning in the model (λ > 0) gives rise to
significant clustering among the choice of neighboring agents (Fig. 13.2), as
well as, a large non-zero value for the fractional excess demand, M . We find
that the probability distribution of M evolves from a single peak at 0, to a
bimodal distribution (having two peaks at finite values of M , symmetrically
located about 0) as λ increases from 0 [11]. The fractional excess demand
switches periodically from a positive value to a negative value having an av-
erage residence time which increases sharply with λ and with N (Fig. 13.3).
For instance, when λ is very high relative to μ, we see that M gets locked into
one of two states (depending on the initial condition), corresponding to the
majority preferring either one or the other choice. This is reminiscent of lock-
in in certain economic systems subject to positive feedback [12]. The special
case of μ = 0, λ > 0 also results in a lock-in of the fractional excess demand,
with the time required to get to this state increasing rapidly as λ → 0. For
μ > λ > 0, large clusters of agents with identical choice are observed to form
and dissipate throughout the lattice. After sufficiently long times, we observe
the emergence of structured patterns having the symmetry of the underlying
lattice, with the behavior of agents belonging to a particular structure be-
ing highly correlated. Note that these patterns are dynamic, being essentially
concentric waves that emerge at the center and travel to the boundary of the
region, which continually expands until it meets another such pattern. Where
two patterns meet their progress is arrested and their common boundary re-
sembles a dislocation line. In the asymptotic limit, several such patterns fill
up the entire system. Ordered patterns have previously been observed in spa-



184 Sitabhra Sinha and Srinivas Raghavendra

λ  = 0.2

n (agent #)

T
 (

 it
rn

s 
)

20 40 60 80 100

50

100

150

200

250

300

350

400

n (agent #)

T
 (

 it
rn

s 
)

λ  = 0.1

20 40 60 80 100

50

100

150

200

250

300

350

400

n (agent #)

T
 (

 it
rn

s 
)

λ  = 0.05

20 40 60 80 100

50

100

150

200

250

300

350

400

n (agent #)

T
 (

 it
rn

s 
)

λ  = 0.0

20 40 60 80 100

50

100

150

200

250

300

350

400

Fig. 13.2. The spatiotemporal evolution of choice (S) among 100 agents, arranged in
a one-dimensional lattice, with the time-evolution upto 400 iterations starting from
a random configuration shown along the vertical axis. The colors (white or black)
represent the different choice states (buy or sell) of individual agents. The adaptation
rate μ = 0.1, and the learning rate λ increases from 0 (top left) to 0.2 (bottom right).
Note that, as λ increases, one of the two states becomes dominant with the majority
of agents at any given time always belonging to this state, although each agent
regularly switches between the two states.
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Fig. 13.3. Time series of the fractional excess demand M in a two-dimensional
square lattice of 100 × 100 agents. The adaptation rate μ = 0.1, and the learning
rate λ is increased from 0 to 0.2 to show the divergence of the residence time of the
system in polarized configurations.

tial prisoner’s dilemma model [13]. However, in the present case, the patterns
indicate the growth of clusters with strictly correlated choice behavior. The
central site in these clusters act as the “opinion leader” for the entire group.
This can be seen as analogous to the formation of “cultural groups” with
shared beliefs [14]. It is of interest to note that distributing λ from a random
distribution among the agents disrupt the symmetry of the patterns, but we
still observe patterns of correlated choice behavior (Fig. 13.4). It is the global
feedback (λ �= 0) which determines the formation of large connected regions
of agents having similar choice behavior.

To get a better idea about the distribution of the magnitude of fractional
excess demand, we have looked at the rank-ordered plot of M , i.e., the curve
obtained by putting the highest value of M in position 1, the second highest
value of M in position 2, and so on. As explained in Ref. [15], this plot is
related to the cumulative distribution function of M . The rank-ordering of M
shows that with λ = 0, the distribution varies smoothly over a large range,
while for λ > 0, the largest values are close to each other, and then shows
a sudden decrease. In other words, the presence of global feedback results
in a high frequency of market events where the choice of a large number of
agents become coordinated, resulting in excess demand or supply. Random
distribution of λ among the agents results in only small changes to the curve
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Fig. 13.4. The spatial pattern of choice (S) in a two-dimensional square lattice of
100× 100 agents after 2× 104 iterations starting from a random configuration. The
adaptation rate μ = 0.1, and the learning rate λ of each agent is randomly chosen
from an uniform distribution between 0 and 0.1.

Lognormal Distribution (mean=0.05, var=0.0025)

N = 100, μ = 0.1

Fig. 13.5. Rank-ordered plot of M for a one-dimensional lattice of 100 agents. The
adaptation rate μ = 0.1, and the learning rate λ of each agent is chosen from three
different random distributions: uniform (circle), exponential (square) and log-normal
(diamond).

(Fig. 13.5). However, the choice of certain distribution functions for λ elevates
the highest values of M beyond the trend of the curve, which reproduces
an empirically observed feature in many popularity distributions that has
sometimes been referred to as the “king effect” [16, 17].
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13.4 Conclusion

In summary, we have presented here a model for the emergence of collective ac-
tion defining market behavior through interactions between agents who make
decisions based on personal information that change over time through adap-
tation and learning. We find that introducing these effects produces market
behavior marked by two phases: (a) market equilibrium, where the buyers
and sellers (and hence, demand and supply) are balanced, and (b) market
polarization, where either the buyers or the sellers dominate (resulting in ex-
cess demand or excess supply). There are multiple mechanisms by which the
transition to market polarization occurs, e.g., (i) keeping the adaptation and
learning rate fixed but switching from an initially regular neighborhood struc-
ture (lattice) to a random structure (mean-field) one sees a transition from
market equilibrium to market polarization; (ii) in the lattice, by increasing
the learning rate λ (keeping μ fixed) one sees a transition from equilibrium
to polarization behavior; and (iii) in the case where agents have randomly
chosen neighbors, by increasing the adaptation rate μ beyond a critical value
(keeping λ fixed) one sees a transition from polarized to equilibrium market
state.

The principal interesting observation seems to be that while, on the one
hand, individual agents regularly switch between alternate choices as a result
of adapting their beliefs in response to new information, on the other hand,
their collective action (and hence, the market) may remain polarized in any
one state for a prolonged period. Apart from financial markets, such phe-
nomena has been observed, for example, in voter behavior, where preferences
have been observed to change at the individual level which is not reflected
in the collective level, so that the same party remains in power for extended
periods. Similar behavior possibly underlies the emergence of cooperative be-
havior in societies. As in our model, each agent can switch regularly between
cooperation and defection; however, society as a whole can get trapped in
a non-cooperative mode (or a cooperative mode) if there is a strong global
feedback.

Even with randomly distributed λ we see qualitatively similar results,
which underlines their robustness. In contrast to many current models, we
have not assumed a priori existence of contrarian and trend-follower strate-
gies among the agents [18]. Rather, such behavior emerges naturally from the
micro-dynamics of agents’ choice behavior. Further, we have not considered
external information shocks, so that all observed fluctuations in market activ-
ity is endogenous. This is supported by recent empirical studies which have
failed to observe any significant correlation between market movements and
exogenous economic variables like investment climate [19].

We have recently studied a variant of the model in which the degree of
interactions between neighboring agents Jij is not uniform and static, but
evolves in time [20]. This is implemented by assuming that agents seek out
the most successful agents in its neighborhood, and choose to be influenced
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by them preferentially. Here, success is measured by the fraction of time the
agents decision (to buy or sell) accorded with the market behavior. The result-
ing model exhibits extremely large fluctuations around the market equilibrium
state (M = 0) that quantitatively match the fluctuation distribution of stock
price (the “inverse cubic law”) seen in real markets.

Another possible extension of the model involves introducing stochasticity
in the dynamics. In real life, the information an agent obtains about the choice
behavior of other agents is not completely reliable. This can be incorporated in
the model by making the updating rule Eq. (13.1) probabilistic. The degree of
randomness can be controlled by a “temperature” parameter, which represents
the degree of reliability an agent attaches to the information available to
it. Preliminary results indicate that higher temperature produces unimodal
distribution for the fractional excess demand.

Our results concerning the disparity between behavior at the level of the
individual agent, and that of a large group of such agents, has ramifications
beyond the immediate context of financial markets [21]. As for example, it is
often said that “democracies rarely go to war” because getting a consensus
about such a momentous event is difficult in a society where everyone’s free
opinion counts. This would indeed have been the case had it been true that the
decision of each agent is made independently of others, and is based upon all
evidence available to it. However, such an argument underestimates how much
people are swayed by the collective opinion of those around them, in addition
to being aroused by demagoguery and yellow journalism. Studying the harm-
less example of how market polarizations occur even though individuals may
regularly alternate between different choices may help us in understanding
how more dangerous mass madness-es can occur in a society.
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14.1 Introduction

In this paper, we examine an economic theory of information cascade1, which
predicts a type of herding behaviors, in an agent-based simulation.

The economic theory of information cascade tries to explain herding be-
haviors of agents by a statistical decision model. In that model, each agent
decides sequentially one by one. Each agent can observes both a noisy signal
of the state of the world (e.g., quality of a product) and the other agents’ be-
haviors (e.g., purchasing decisions) which were made previously. The theory
stresses importance of public information of the past histories of the other
agents’ choices. Surprisingly, according to that theory, an agent can be easily
affected by only a few agents who decided before and tend to ignore his/her
own private taste or preference, then follow the predecessors’ actions. If this
theory is truly applicable to the real world situation such as a customer mar-
keting, providing public information such as purchasing histories of the other
agents has in fact a great impact on improving the performance of customer
marketing.

On the other hand, the theory of information cascade ignore the effect of
agent’s learning, namely, it considers only one-shot, static environment. As it
is unrealistic assumption, we develop a new model featured by a reinforcement
learning2 to extend the model of information cascade, and conducted a series
of experiments in order to check which factor, public information or agent’s
learning, is crucial to induce information cascade in a dynamic environment.

Our results show that incorporating the customer’s past experience into
the model has great impact on the emergence of information cascade.

1 Birkhchandani et al. [5], Chamley [7], and Gale [10] are useful survey of the theory
of information cascades.

2 See Sutton and Barto [16] and Young [17].



192 Toshiji Kawagoe and Shinichi Sasaki

The organization of the paper is as follows. In the next section, we briefly
summarize the theory of information cascade. In section 14.4, the design and
results of our simulation is shown. Conclusions are given in the last section.

14.2 The Theory of Information Cascade

In many socio-economic situations, although agents have private information
or taste/preference of the item to be purchased, they tend to follow the de-
cisions made by their predecessors. An information cascade occurs when it is
optimal for each agent to ignore its private information and follow the deci-
sions made by the other agents who have decided before.

The theory of information cascade was initiated by several researchers in
economics such as Banerjee [3] and Birkhchandani et al. [4], and it has been
tested in the laboratory with human subjects by a number of experimental
economists (see, for example, Allsopp and Hey [1], Anderson and Holt [2],
Kübler and Weizsäcker [11] [12], Hung and Plott [13], Sasaki [14], Sasaki and
Kawagoe [15]). It is also applied for explaining herding behavior in financial
decision making (Cipriani and Guarino [8] and Drehmann et al. [9]).

In the theory of information cascade, each agent makes a decision sequen-
tially one by one. Each agent’s task is to predict a realized, true state of
the world, t ∈ T (in our context, for example, quality of a product). Each
agent knows prior probability distribution, p(t), of the state of the world t.
Before agent’s decision is made, agent i receives a noisy signal or informa-
tion of the state of the world, si, privately. Each agent also knows likelihood,
p(si|t), of receiving that noisy signal si conditional of the state t. In addition,
publicly announced past decisions made by the other agents (public infor-
mation), {aj}i−1

j=1, is available. So agent i can calculate postrior probability,

p(t|si, {aj}i−1
j=1), of the realized state of world by utilizing its private informa-

tion si(t), likelihood p(si|t) and public information {aj}i−1
j=1 to predict true

state of the world.
But if a small number of agents accidentally made same decisions, then it is

easily shown by Bayes rule that an agent who observes such public information
should ignore its private information and follows its predecessors’ decisions.
In other words, for t, t′(t �= t′) and ∀si, s

′
i(si �= s′i), if

p(t|si, {aj}i−1
j=1) > p(t′|si, {aj}i−1

j=1)

then

p(t|s′i, {aj}i−1
j=1) > p(t′|s′i, {aj}i−1

j=1)

holds when information cascade occurs. Thus the theory of information
cascade represents fads or herding behaviors of agents3.

3 As Çelen and Kariv [6] pointed out, information cascade defined by Birkhchandani
et al. [4] and herd behavior defined by Banerjee [3] are slightly diffenrent. The
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If the prediction made by agents who are involved in an information cas-
cade is true state of the world, we call it ”good cascade.” Of course, it is
possible that the prediction made by agents who are involved in an infor-
mation cascade is not correct state of the world. We call such a case ”bad
cascade.”

Now let us examine whether the theoretical prediction of the theory of
information cascade can be verified in an agent-based simulation.

14.3 Agent-Based Simulation

In our simulation, five agents in a group predict the true state of the world
sequentially. Following the basic setup of experiments conducted by Anderson
and Holt [2], we compare their symmetric case with asymmetric one in our
simulation. In each case, there are two state of the world, A and B, and two
signals, a and b. In symmetric case, prior probability of the state A and B are
p(A) = p(B) = 1/2 respectively, and likelihood of receiving a signal a (b) in
the state A (B) are p(a|A) = p(b|B) = 2/3. In this case, at least two agents
make same prediction, an agent who observes such public information follows
the predecessors’ prediction. In asymmetric case, prior probability of the state
A and B are p(A) = p(B) = 1/2 respectively, and likelihood of receiving a
signal a (b) in the state A (B) are p(a|A) = 6/7 and p(b|B) = 2/7. In this
case, if at least four agents predict A, then predicting A is best response for an
agent who observes such public information, and if at least an agent predict
B, then predicting B is best response for subsequent agents whatever signal
they receive.

We compare the following three agent models; (1) Agents who follows
Bayes rule (Type B) behaves in accordance with Bayes rule given its private
information and the predecessor’s decisions as in theoretical prediction. This
case is as a benchmark, so that agent’s own private past experiences of predic-
tion are not available. (2) Agents who follow reinforcement learning without
public information (Type RNP) can see only its private information, and fol-
lows a reinforcement learning (see Sutton and Barto [16] and Young [17]).
Public information is not available for each agent in this case, but agents can
change their behaviors in accordance with their own private past experiences
of prediction. (3) Agents who follow reinforcement learning with public infor-
mation (Type RP) can see not only its private information but also public
information, i.e., the decisions made by the other agents who decided before
that agent. So agents can utilize not only their own private past experiences
of prediction but also public information.

For Type B and RNP model, theoretical frequency of information cascade
can be derived from Bayes rule. We assume that each agent declares a state

difference between these notions is apparent when the domain of the state of world
is continuous. But we can use these terms interchangeably when the domain of
the state of world is discrete.
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with higher posterior probability. When the posterior probability for each state
is equal, either is declared with equal probability. This is our tie-breaking rule.
Let m be the number of signal a observed and n be the number of signal b
observed. For m+n+1st agent, in symmetric case, posterior probability that
true state is A, p(A|m, n), is as follows.

p(A|m, n) =
p(m, n|A)p(A)

p(m, n|A)p(A) + p(m, n|B)p(B)

=
(2/3)m(1/3)n(1/2)

(2/3)m(1/3)n(1/2) + (1/3)m(2/3)n(1/2)
=

2m

2m + 2n

Similarly, posterior probability that true state is A in asymmetric case is
derived as follows.

p(A|m, n) =
p(m, n|A)p(A)

p(m, n|A)p(A) + p(m, n|B)p(B)

=
(6/7)m(1/7)n(1/2)

(6/7)m(1/7)n(1/2) + (5/7)m(2/7)n(1/2)
=

6m

6m + 5m2n

Using these equations, one can derive theoretical frequency of information
cascade for Type B and RNP agents. Table 14.1 and 14.2 shows that fre-
quency of information cascade in each length. Here A-cascade means that an
information cascade in which agents predict A occurs, and B-cascade means
that an information cascade in which agents predict B occurs.

Table 14.1. Theoretical Frequency of Information Cascade (Symmetric case)

A-cascade B-cascade

Length Type B RNP B RNP

3 Good 0.062 0.230 0.062 0.230
Bad 0.025 0.049 0.025 0.049
Total 0.087 0.0279 0.087 0.279

4 Good 0.062 0.132 0.062 0.132
Bad 0.025 0.016 0.025 0.016
Total 0.087 0.148 0.087 0.148

5 Good 0.556 0.132 0.556 0.132
Bad 0.222 0.004 0.222 0.004
Total 0.778 0.136 0.778 0.136

We used a classifier system like reinforcement learning for Type RP and
RNP models in our simulation. Given the private information si and public



14 Ignoring Public Information 195

Table 14.2. Theoretical Frequency of Information Cascade (Asymmetric case)

A-cascade B-cascade

Length Type B RNP B RNP

3 Good 0.064 0.039 0.052 0.030
Bad 0.105 0.058 0.073 0.002
Total 0.169 0.097 0.125 0.032

4 Good 0.000 0.154 0.102 0.074
Bad 0.122 0.148 0.000 0.010
Total 0.122 0.302 0.102 0.084

5 Good 0.556 0.463 0.285 0.186
Bad 0.143 0.000 0.260 0.001
Total 0.699 0.463 0.545 0.187

information {aj}i−1
j=1, each agent chooses one of the predictions, A or B, with

probability pA
i (si, {aj}i−1

j=1|τ) and pB
i (si, {aj}i−1

j=1|τ) respectively in time period

τ . pA
i and pB

i are determined by past experiences of the predictions made by
agent i. Denote fA

i (si, {aj}i−1
j=1|τ) and fB

i (si, {aj}i−1
j=1|τ) as the ”fitness” of

predicting A and B in time period τ given si and {aj}i−1
j=1. fA

i (si, {aj}i−1
j=1|τ)

and fB
i (si, {aj}i−1

j=1|τ) are updated as follows. First we assume

fA
i (si, {aj}i−1

j=1|0) = fB
i (si, {aj}i−1

j=1|0) = 1

as initial conditions. Then if agent i predicts A and it is correct (incorrect)
at period τ , the fitness of the prediction A is updated as follows;

fA
i (si, {aj}i−1

j=1|τ + 1) = βfA
i (si, {aj}i−1

j=1|τ) ± R

where R > 0 is a constant for correct (incorrect) prediction and β(0 <
β ≤ 1) is forgetting parameter. If agent i did not predict A at period τ , the
fitness of the predicting A is updated as follows;

fA
i (si, {aj}i−1

j=1|τ + 1) = βfA
i (si, {aj}i−1

j=1|τ).

Then, given the fitness of the prediction, probability of predicting A and
B at time period τ is given in the following logit form,

pA
i (si, {aj}i−1

j=1|τ) =
exp(fA

i (si, {aj}i−1
j=1|τ))

exp(fA
i (si, {aj}i−1

j=1|τ)) + exp(fB
i (si, {aj}i−1

j=1)|τ)

The updating rule and probability of predicting B is defined analogously.
Totally 1000 rounds of simulation are conducted in each model.
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Fig. 14.1. The Number of Occurrence of Information Cascade

14.4 Results

Fig. 14.1 depicts the number of occurrence of information cascade in each
condition. Information cascades occurred in our simulation are classified by
their length. The length of information cascade is measured by the number of
agents who take same predictions subsequently. So if three agents subsequently
predict A, then we can say that information cascade with length 3 occurred.

From Fig. 14.1, one can easily see that Type B agents likely form longer
cascade. In fact, information cascades with length 5 occur most frequently
in Type B model in any case. On the other hand, information cascades with
length 3 occur most frequently in Type RNP model in every condition. The
results of Type RP model lie in between them.

Table 14.3 shows the frequency of good and bad cascades. It is quite sur-
prising fact that, for any length, good cascades occur most frequently in
Type RNP model in symmetric A-cascade cases. In addition, in symmetric
B-cascade and asymmetric A-cascade cases, frequency of good cascades with
length 4 and 5 are also the highest in Type RNP model. On the other hand,
Type B model outperforms other models for predicting good cascades only in
symmetric B-cascade with length 3 and asymmetric B-cascade cases.
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Table 14.3. The Proportion of Occurrences of Good Cascade

Symmetric case

A-cascade B-cascade

Length Type B RP RNP B RP RNP

3 Good 39 59 132 33 46 102
(75.0%) (62.1%) (78.1%) (78.6%) (67.6%) (77.9%)

Bad 13 36 37 9 22 29
(25.0%) (37.9%) (21.9%) (21.4%) (32.4%) (22.1%)

Total 52 95 169 42 68 131
(100%) (100%) (100%) (100%) (100%) (100%)

4 Good 28 52 63 32 28 62
(70.0%) (66.6%) (79.7%) (84.2%) (75.7%) (84.9%)

Bad 12 26 16 6 9 11
(30.0%) (33.4%) (20.3%) (15.8%) (24.3%) (15.1%)

Total 40 78 79 38 37 73
(100%) (100%) (100%) (100%) (100%) (100%)

5 Good 299 199 61 264 175 65
(74.5%) (75.9%) (91.0%) (70.9%) (77.4%) (95.5%)

Bad 102 63 6 108 51 3
(25.5%) (24.1%) (8.0%) (29.1%) (22.6%) (4.5%)

Total 401 262 67 372 226 68
(100%) (100%) (100%) (100%) (100%) (100%)

Asymmetric case

A-cascade B-cascade

Length Type B RP RNP B RP RNP

3 Good 35 66 57 74 76 41
(33.3%) (42.0%) (38.5%) (60.7%) (58.0%) (52.6%)

Bad 74 91 91 48 55 37
(66.7%) (58.0%) (61.5%) (39.3%) (42.0%) (47.4%)

Total 109 157 148 122 131 78
(100%) (100%) (100%) (100%) (100%) (100%)

4 Good 0 29 49 110 48 25
(0.0%) (46.0%) (50.5%) (100.0%) (59.3%) (67.6%)

Bad 63 34 48 0 33 12
(100.0%) (54.0%) (49.5%) (0.0%) (40.7%) (32.4%)

Total 63 63 97 110 81 37
(100%) (100%) (100%) (100%) (100%) (100%)

5 Good 266 118 118 137 39 99
(66.5%) (69.0%) (67.4%) (69.9%) (52.7%) (55.9%)

Bad 134 53 57 59 35 78
(33.5%) (31.0%) (32.6%) (30.1%) (47.3%) (44.1%)

Total 400 171 175 196 74 177
(100%) (100%) (100%) (100%) (100%) (100%)
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This means that the prediction made by the agents who utilizes only their
own private past experiences of prediction is more likely to be true except for
asymmetric B-cascade cases. So, ignoring public information, and believing
one’s own private information and experiences is much better for making
correct prediction.

14.5 Conclusions

After the first well-controlled laboratory experiment by Anderson and Holt [2]
confirmed theoretical prediction of information cascade made by Birkhchan-
dani et al. [4], their result has been replicated by an experimentalist such as
Hung and Plott [13]. But a number of experimentalists such as Kübler and
Weizsäcker [11] [12], and Sasaki and Kawagoe [15] pointed out that theoreti-
cal prediction of Birkhchandani et al. [4] does not hold in exact sense in the
laboratory. They showed that subjects’ behaviors were still affected by their
private signals even after a longer cascade has already occurred. Then, from
such results, a natural question arises in our mind whether ignoring public
information is best policy for predicting true state of world.

In this paper, we tried to answer that question by developing a new model
featured by a reinforcement learning to extend the model of information cas-
cade, and conducted a series of experiments in order to check which factor,
public information or agent’s learning, is crucial to induce information cascade
in a dynamic environment.

Our results showed that incorporating agent’s past experience of prediction
had great impact on the emergence of information cascade and that providing
public information was rather detrimental for agents who would like to predict
correct state of the world. Thus, the prediction made by the agents who utilizes
only their own private past experiences of prediction is more likely to be true
except for asymmetric B-cascade cases. So, ignoring public information, and
believing one’s own private information and experiences is much better for
making correct prediction. This confirm the tendency of subjects utilizing
their private information even after information cascade started, which was
observed by Kübler and Weizsäcker [11] [12], and Sasaki and Kawagoe [15].
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[12] Kübler, D. and G. Weizsäcker: Are Longer Cascades More Stable? mimeo
[13] Hung, A. A., C. R. Plott: Information Cascades: Replication And An Ex-

tension To Majority Rule And Conformity-Rewarding Institutions, Amer-
ican Economic Review, 91 (2001) 1508-1520

[14] Sasaki, S.: Signal Qualities, Order Of Decisions, And Informational Cas-
cades: Experimental Evidence, Economics Bulletin, 3 (2005) 1-11

[15] Sasaki, S. and T. Kawagoe: Can You Believe Your Neighbors’ Behaviors?
mimeo

[16] Sutton, R. S., Barto, A. G.: Reinforcement Learning An Introduction.
The MIT Press, 1998

[17] Young, H. P.: Strategic Learning And Its Limit. Oxford University Press,
2004



Part V

Social Interaction - Connectivity



15

Complex Behaviours in Binary Choice Model
with Global or Local Social Influence

Denis Phan and Stéphane Pajot
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Summary. This paper illustrates the effects of global or local social influences upon
binary choice. Analytical results are summarized and an ACE (Agent based Compu-
tational Economics) approach is used to investigate the corresponding mechanisms
of interdependence in the case of a coordination problem and finite size effects.

15.1 Introduction

In this paper, we explore the effects of the introduction of social influences
through fixed interaction structures upon local and global properties of a sim-
ple model of binary choice. More specifically, interlinked agents have to make
a binary choice. Their preferences are both intrinsically heterogeneous (idio-
syncratic preferences) and interactively heterogeneous (it positively depends
on the choice of their neighbours). Aggregate outcomes of such situation may
be characterized by multiple equilibria and complex dynamics with “tipping”
and “avalanches”. The first part of the present study summarizes analytical
results in case of global influence while the second part relies on numerical
simulations in the case of finite size population for both a global and a local
influence network, making use of “Moduleco-Madkit’, a multi-agent platform
(Gutknecht and Ferber 2000; Phan 2004; Michel et al. 2005).

15.1.1 A Short Birds Eyes View of the Literature

The question of binary choices with externalities in the social sciences has been
directly addressed by (Schelling 1973, 1978), and the question of individual
and collective threshold of adoption has been introduced later by (Granovet-
ter, 1978). In such models, the individual threshold of adoption is defined as
the number of adopters each agent considers to be sufficient to modify his
behaviour. As a result, the final equilibrium depends on the distribution of
individual thresholds, and in numerous cases with several equilibria, the se-
lection of a particular equilibrium depends on the history of the collective
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dynamics. In the context of “global influence”, there is no “local network”
in the sense that individuals are only sensitive to the percentage of the total
population which has previously adopted (a behaviour, a good, a service etc.).
(Valente 1995) stresses the importance of the local structure of interpersonal
relations in the propagation phenomenon (innovations, opinions), and defines
the threshold of exposure of an agent as the proportion of adopters in his per-
sonal network (neighbourhood) sufficient enough to induce a change in his
behaviour.

In the mathematical sociology field, (Weidlich and Haag 1983) proposes,
in the global perspective, a generic model of opinion formation based upon a
master equation and the Fokker-Plank approximation approach. In the micro-
to macro perspective,(Kindermann and Snell 1980) identifies a social network
as an application of a Markov random field. (Galam et al. 1982) proposes
probably the first micro-based application of statistical physics tools to soci-
ology 1. This pioneering paper proposes a new approach of tipping in collective
behaviour applied to strikes. But the scope of this paper is quite larger. Galam
and co-authors identify by the way of a “phase analysis” the existence of two
regimes (or “phases”) separated by a critical point, in the neighbourhood of
which the system is extremely sensitive to small changes in parameters as well
as to the history of the system. Then, by a tipping effect, small microscopic
changes can lead to drastic changes at the macro level.

In economics, the pioneering work of (Föllmer 1974) considers local sto-
chastic interactions by the way of Markov random fields in a general equilib-
rium model with random preferences. The same year, Gary Becker advocates
the introduction of social environment and social interactions in the rational
decision of individuals, through his concept of “social income” (Becker 1974).
In the middle of the 80’s, (Kirman 83) and (Kirman and Oddou and Weber
1986) suggests the use of stochastic graph theory in order to take into ac-
count the local communications between agents within the markets. But the
real take off for the models of individual choice with interactions and social in-
fluence in economics began by the 90’s. Some typical contributions are (Brock
and Durlauf 2001a), (Glaeser and Sacerdote and Scheinkman, 1996; Glaeser
and Scheinkman 2002) for the emphasis on social dimension in a Beckerian
tradition, and (Ioannides 2006) for the topologies of interactions 2.

The model briefly discussed in this paper- hereafter referred as the GNP
model - was previously presented elsewhere in (Gordon et al. 2005), (Nadal
et al. 2005), (Phan and Semeshenko 2006), and generalized to a large class
of distributions in (Gordon et al. 2006). The general structure of the GNP
model seems to be reminiscent of a class of models by Durlauf and co-authors
(Blume and Brock 2001) and especially (Brock and Durlauf 2001a, 2001b)

1 This approach is qualified as “sociophysics”. For a discussion of the relationship
with mechanical physics, see (Durlauf 1999), and (Phan and Nadal and Gordon
2004).

2 see syntheses by (Blume 1997; Durlauf 1997; Blume and Durlauf 2001b)
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- hereafter referred as the DBB model. But this apparent similarity is only
superficial and the structure of GNP and DBB differs by the nature of the
disorder (e.g. heterogeneity across agents and randomness). Therefore, in the
GNP model agents are heterogeneous with respects to their idiosyncratic pref-
erences, which remain fixed and do not contain additively stochastic term,
while the DBB model belongs to the class of both Random Utility Model
(RUM) 3 and quantal choice analysis (McFadden 1974). The DBB model as-
sumes a double exponential (extreme value, type I) independent identically
distributed random variables in each sub-utility of the underlying Thurstone’s
discriminal process, hence the distribution function for the difference of these
random variables is logistic. As underlined elsewhere (Phan et al. 2004; Nadal
et al. 2005), these two classes of models are quite different. The DBB model
belongs to the class of the Classic Ising Model with “annealed” disorder.
The heterogeneity comes from the random term of the RUM only, not from
the deterministic term, assumed to be the same for all agents On the con-
trary, our own model is formally equivalent to a “Random Field Ising Model”
(RFIM), with a fixed heterogeneous idiosyncratic term: the disorder is said
to be “quenched” (i.e. there is no random utility). These two kinds of mod-
els can lead to very different behaviours (Stanley 1971; Galam and Aharony
1980, 1981; Galam 1982; Sethna et al. 1993, 2005). Some of them are presented
below.

15.2 The Model and its Global Behaviour

The question of social influence over individual choice is now on the econo-
mist’s agenda. In this section, some analytical results from the GNP model are
presented and discussed in the particular case of global influence and symmet-
ric triangular distribution of idiosyncratic preferences (Phan and Semeshenko
2006).

15.2.1 Modelling the Individual Choice in a Social Context

We consider a set of N agents i ∈ ΛN ≡ {1, 2, .., N} with a classical linear
willingness-to-adopt function. Each agent makes a simple binary choice, that
is, either adopts (ωi = 1) or does not adopt (ωi = 0). A rational agent chooses
ωi in the strategic set Ω ≡ {0, 1} in order to maximize a linear surplus function
ωiVi:

Wi (ωi |ω̃−i ) ≡ max
ωi∈{0,1}

{ωi.Vi (ω̃−i)}
with : Vi (ω̃−i) = (Hi − C) + Jik

Nϑi

∑
k∈ϑi

ω̃k
(15.1)

3 Originated in Thurstone’s model of comparative judgment (Thurstone 1927), in-
troduced in economics by (Marschak 1960; Block and Marschak 1960), see also
(Mansky 1977)
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Where C is the cost of adoption 4 and Hi represents the idiosyncratic
preference component. Some other agents k, influence agent i’s preferences
through their own choices ωk. Agents k hereafter called neighbours of i are
within a subset: ϑi ∈ ΛN , of size Nϑi, called neighbourhood of i such that
each agent k ∈ ϑi. This social influence is represented here by a weighted
sum of these choices. Let us denote Jik/Nϑi the corresponding weight i.e. the
marginal social influence on agent i, from the decision of agent k ∈ ϑi. This
social influence is assumed to be positive: Jik > 0. For simplicity, we consider
here only the case of homogeneous influences, that is, identical positive weights
for all influence parameters in the neighbourhood: ∀i ∈ ΛN , ∀k ∈ ϑi : Jik = J .
For a given neighbour k taken in the neighbourhood ϑi, the marginal social
influence is J/Nϑi if the neighbour is an adopter (ωi = 1), and zero otherwise.
The individual surplus (15.1) can be rewritten in a more simply way as:

Wi (ωi |ω̃−i ) ≡ max
ωi∈{0,1}

{ωi (Hi − C + Jηe
i (ω̃−i))}

with : ηe
i (ω̃−i) ≡

∑
k∈ϑi

ω̃k/Nϑi
(15.2)

Where ηe
i (ω̃−i) is the expected rate of adoption within the neighbourhood

of i. In the GNP model, the private idiosyncratic term Hi, is assumed in-
variable in time, but may differ from one agent to the other. It is useful to
introduce the following notation for Hi - hereafter called Idiosyncratic Will-
ingness to Adopt (IWA):

Hi = H + Yi with : lim
N→∞

1

N

∑
N

Yi = 0 ⇒ lim
N→∞

1

N

∑
N

Hi = H (15.3)

where Y i is the outcome of an i.i.d. random variable Y with zero mean,
distributed among the agents. Let fy(Y ) be the Probability Density Function
(pdf) of Y . As Yi remains fixed, the resulting distribution of agents over the
network of relations is a random field. Then, this model is formally equivalent
to a “Random Field Ising Model” (RFIM) and the disorder is said to be
“quenched” (i.e. there is no stochastic term). Therefore, agent’s choices are
purely deterministic (in contrast with the random utility approach in the
DBB model, as mentioned before). An example of such model in sociophysics
literature is (Galam 1997).

It is possible to relate our own model of binary choice with social influence
to game theoretic models. Under our assumptions, all the agents have the same
form of instrumental rationality (then, best response with respect to theirs
expectations ω̃−i) and each agent has only two possible strategies: ωi ∈ Ω.
It is possible to represent the total payoff of an agent by the “normal form”
matrix G1. From this standpoint, player 2 is a fictitious player; say a kind of
Neighbourhood Representative Player (NRP), who stands for the behaviour of

4 i.e. the price to buy one unit in the market case or some common cost in the non
market case, cf. (Granovetter 1978, Glaeser and Scheinkman 2002)
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the neighbourhood as a whole. If every k in the neighbourhood plays ωk = 0,
the NRP plays the pure strategy ωnr = 0.

Table 15.1. Payoff matrix for an agent i and best reply equivalent potential game

(a) - game G1 ωnr = 0 ωnr = 1 (b) - game G2 ωnr = 0 ωnr = 1

ωi = 0 0 0 ωi = 0 C − Hi 0

ωi = 1 Hi − C Hi − C + J ωi = 1 0 Hi − C + J
Player i in rows - fictitious NRP - indexed nr - in columns

Conversely, if every k in the neighbourhood plays ωk = 1, the NRP plays
the pure strategy ωnr = 1. However, the classical framework of two players
game theory does not apply in numerous cases, because the strategic set of the
player i and the NRP is generally asymmetric. Player i must plays only a pure
strategy, while NRP can plays a mixed strategy. That is, the expected rate of
adoption within the neighbourhood ηe

i (ω̃−i) corresponds to the expected share
of (ωk = 1) players in the neighbourhood. Consequently, player i plays his best
response against the mixed strategy ηe

i (ω̃−i). Then, this later interpretation
of the mixed strategy can be related to the framework of population games
(Blume, 1997), where agent i plays in Nϑi bilateral confrontations against all
agents k in their neighbourhood, with the payoff matrix G1’ based on average
payoff ((Hi − C)/Nϑi for ωi = 1 against ωk = 0 and (Hi − C + J)/Nϑi for
(ωi = 1) against (ωk = 1), respectively, zero otherwise). Indeed, since Nϑi is
fixed, maximising the total surplus or the average surplus lead to the same
solution.

One may add a constant term to one column and multiply all the columns
by a constant term (here Nϑi

) without affecting the dominance ordering analy-
sis, hence the best reply outcome. Thus, the following matrix in Table 15.1.b
is said to be “best reply equivalent” to the one of Table 15.1.a This means
notably that the Nash equilibria are the same whether one considers Game
G1 (Table 15.1.a) or Game G1’ (Table 15.1.b). This class of game with “best
reply equivalence” (hence, similar Nash equilibrium) is called a (weighted)
potential games (Monderer, Shapley, 1996).

For agents (type 0) such as: Hi−C+J < 0, strategy ωi = 0 (never adopt) is
stricly dominant. Conversely, for agents (type 1) such as: Hi−C > 0, strategy
ωi = 1 (always adopt) is strictly dominant. Then, the relevant situation is one
with agents (type 3) such as Hi − C < 0 and Hi − C + J > 0. In this
case, the choice depends on ηi(ω̃

e
−i), the expected rate of adoption within the

neighbourhood. If all agents are of type (3), we have typically a coordination
game with two Nash equilibrium; the so called “Stag Hunt Game”. With
bounded support for Y , [Ymin, Ymax], this is the case if: Ymax ≤ C − H ≤
Ymin + J , what implies a sufficiently strength intensity of social effect, with
respect to the dispersion of preferences J ≥ Ymax − Ymin.
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Table 15.2. A typology of interactions and demand dynamics

Neighbourhood (a) No relations (b) Localised (c) Generalised
relations relations

Level of (independent Localized Global
interactions agents) interactions interactions

sensitivity to the Null Strong Null
network topology

Avalanches No localised not localised
in the network in the network

15.2.2 Individual Interactions and Chain Reaction

In the first extreme case (a), there are no relations between agents. In this
case, the aggregate demand depends on any interaction structure, and there
is no external effect (local or global). The agents are independent one from
each other. In the second extreme case (c), all agents interact by means of
global interactions (e.g. the rate of adoption in the whole population). Let
η ≡ Na/N be te rate of adoption within the population. For N sufficiently
large, this rate is closed to the rate of adoption within the neighbourhood of
each agents (full connectivity) say: η � Na/(N − 1). This case corresponds to
the means field approximation in statistical physics. All agents are equivalent
in the network. In this way, the aggregate demand is sensitive to the global
external effect, but remains independent of the topology of the network (be-
cause the neighbourhood of each agent is composed of all the other agents).
Thus, finite sequences of interdependent decisions called “avalanches” may
arise, but such “dominoes effects” are not localised in the network of interac-
tions and depend only on individual IWA, given the global rate of adoption,
whatever the local rate of adoption (i.e. localized in the near neighbourhood).
Finally, the intermediate case (b) corresponds to situations where agents have
specified relations reified by the way of some network topology (regular neigh-
bourhood or not). Interactions between agents are local, and the topology of
the interpersonal network matters. This local interdependence may give rise
to localised avalanches on the network (Table 15.2).

The term avalanche is associated with a chain reaction where the latter is
directly induced by the behavioural modification of one or several other agents
and not directly by the variation in cost. The cost influence is only indirect.
For example in the left part of the (Table 15.3), an external cost variation
(the same for all agents: C to C′) induces a simultaneous (but independent of
all social influence) change of two agents i and j (connected one to the other
or not). Thus, the mechanism is directly related to the cost and independent
of the social network. If, on the other hand, the cost variation induces the
behavioural change of agent i, and therefore, because of agent i changes his
behaviour, then agent j changes also his behaviour by social effect without
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any new change in cost, by “domino effect”. In that case, the cumulative effect
of a chain of such induced influences is called an “avalanche”.

Table 15.3. Direct and indirect effect of prices upon individual choices

Direct effect of price Indirect effect of price
(social influence: avalanche)

Variation in cost Variation in cost
(C −→ C′) (C −→ C′)

↓
Change of agent i

Change of Change of ↓
agent i agent j Change of agent j

15.2.3 Avalanches and Hysteresis Loops in Aggregate Behaviour
with Unique IWA

In this class of models, the adoption by a single “direct adopter” may lead
to a significant change in the whole population through a chain reaction of
“indirect adopters”. The jump in the number of adopters occurs at different
cost values according to whether the costs increases or decreases, leading to
hysteresis loops as presented below. If the IWA is the same for all agents,
(Hi = H , for all i), the model would be equivalent to the (quenched) Classic
Ising Model with an “uniform external field”: H − C.

In such a case, one would have a so called “first order transition”, with
all the population abruptly adopting as H ≥ C. In Figure 15.1, this initial
(decreasing) threshold is: Cmin = H , where the whole population abruptly
adopts. After adoption, the (increasing) cost threshold is: Cmax = H + J ,
where the whole population abruptly choose ωi = 0 (for all i). When all
agents are adopters, cost variations between: Cmin and Cmax have no effect
on the agents choice. Within that zone [Cmin, Cmax], there are two possible
equilibria for a given cost.

Cmin=H Cmax=H+JC*=H+J/2

1

0

Fig. 15.1. Hysteresis with unique IWA (Hi = H)

From a theoretical point of view, there is a singular cost C∗ = H + J/2
(the center of the interval [Cmin, Cmax]), which corresponds to the unbiased
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situation, where the willingness to adopt is neutral on average. Suppose that
we start within such a neutral state. The agents makes their initial choice on
the basis of some prior expectation about the number of adopters and further
choice by updating this prior by use of the observed outcome. Assume first
that all agents have the same expectation ηe

i = ηe for all i. Then, each agent
has a willingness to adopt equal to: H+Jηe−C∗ = J(ηe−0.5). If ηe > 1/2, the
expected surplus is positive and all agents adopt. Then, the ex post surplus
will be J/2. Conversely, if: ηe < 1/2, the expected surplus is negative and
no agent adopts. The final result is similar if we have two classes of people
with heterogeneous expectations. Those with ηe+

i > 1/2 (in proportion α)
adopt. If α > 1/2, the percentage of adopters is such as pessimistic agents
with ηe−

i < 1/2 but ηe−
i α > 1/2 also adopt, and so on until complete adoption

(and inverse process for α < 1/2). This critical point plays a central role in the
so called spontaneous symmetry breaking, even when agents are only locally
connected. As in our simple example, the collective equilibrium state becomes
identical to the individual state: either all agents adopt, or no agent adopts
(Galam, 2004).

15.3 Avalanches and Hysteresis with Global and Local
Interactions in Finite-size Population

This model describes the properties of many different systems (physical as
well as social). It has been studied for various network architectures. In the
presence of externality, and depending on the parameters, two different stable
equilibria - or “phases” - may exist for a given cost: one with a small fraction of
adopters (in some cases with no adopter) and one with a large fraction (in some
cases, everybody adopts). By an external variation of the cost, a transition
may be observed between these phases. Next subsection concerns the case of
infinite size population and global interaction, while last subsection deals with
both local and global interactions, by the way of computer simulations and
finite size population.

15.3.1 Equilibrium Analysis: Phase Diagram with Global
Externality

In order to present equilibrium results, let us consider now the special case
of global externality from a static standpoint (e.g. without expectations). In
this case, the individual surplus function (15.1) can be rewritten simplier as
a function of the equilibrium value of the rate of adoption η.

Wi (ωi |η ) ≡ max
ωi∈{0,1}

{ωi (Yi + H − C + Jη)} (15.4)

It is convenient to identify the marginal adopter, indifferent between adopt-
ing and not adopting. Let Hm = H + Ym be his idiosyncratic willingness to
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adopt (IWA). This marginal adopter has zero surplus Wm = Vm = 0, ∀ωm ∈
Ω , that is:

Ym = C − H − Jη (15.5)

Consequently, an agent adopts if Yi > Ym and does not adopt otherwise.
Then, if the law of Y has a continuous pdf, the rate of adoption is the solution
of the following:

η = P (Yi > Ym) ≡ Gy(Ym) ≡
∞∫

Ym

fy (y) dy (15.6)

More specifically, assume that Y follows a symmetric triangular law, with
bounded support [−a, +a]. The fixed point condition (15.6) has one or three
solutions, with two stable equilibria in this later case (Phan, Semeshenko
2006). More generally, this is a generic property of this model of binary choice
with externality for a large class of distribution (Gordon et al. 2006).
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Fig. 15.2. Equilibrium regimes in the phase spaces: (J , C − H , a = 2)

According to a methodology introduced by the Physicists, Figure 15.2 ex-
hibits in the phase plane (J, C−H) a cartography of regions with one equilib-
rium or two equilibria, with respect to the value of corresponding parameters.
For the detail of the calculus for this triangular case, see (Phan, Semeshenko,
2006). A stable equilibrium can be viewed as a Nash equilibrium of a popula-
tion game (section 15.2.1). For low cost and sufficiently strength of social cou-
pling, everybody adopt (in zone south and south east on the phase diagram).
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Conversely, for high cost and weak social coupling, nobody adopt (North
West). In the west and south west, for J < JB and J − a < C −H < a, there
is a polymorphic Nash equilibrium with both non-adopters and adopters in pro-
portion 0 < η < 1 (Figure 15.3.a). Let D(η, j) ≡ G−1(η) − Jη. For J > JB ,
there is a zone with two stable Nash equilibria (the grey zone on Figure 15.2).
This zone is delimited by two frontiers given by Dmin(η, j) = J − a + a2/(2J)
and Dmax(η, j) = a−a2/(2J). Therefore, if: Dmin(η, j) > C−H > Dmax(η, j)
there are two equilibria: one rate of adoption less than 50% (possibly 0%) and
other more than 50% (possibly 100%) .

Accordingly, the polymorphic single equilibrium zone has two extensions
for J∗ > J > JB, with: 0 < η− < 0.5 if: Dmin(η, j) < C − H < a and:
0 < η+ < 0.5 if: J − a < C − H < Dmax(η, j) respectively. In the darker
grey zone, the strength of social coupling is such as J > 2a and therefore:
a ≤ C −H ≤ J −a. According to section 15.2.1 all agents are of type (3), and
we have a “Stag Hunt” coordination game with two equilibria, one without
any adoption and another with complete adoption.
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Fig. 15.3. Sequential dynamics with a triangular distribution of IWA

In order to illustrate some typical equilibrium cases from the phase di-
agram, let us consider a recurrent relation drawn from the fixed point con-
dition (15.6) in the case of the agents have identical myopic expectations:
ηe(t) = η(t − 1). Then, Ym(t) = C − H − Jη(t − 1). This recurrent relation
allows us to represent agents’ learning by a graphic of fixed point dynamics
on Figure 15.3. In Figure 15.3.a the stable equilibrium is unique, while there
are two stable equilibria separate by an instable fixed point on Figure 15.3.b
(polymorphic) and Figure 15.3.c (Stag Hunt).

15.3.2 Avalanches and Hysteresis Loops in Aggregate Behaviour
with Logistic IWA

The previous results concern the case of infinite size population and global
interaction. This section is devoted to the case of a finite size population by the
way of computer-based simulations. From work in progress, we present some
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sample experiments with both global and local interactions on a random field
with logistic quenched disorder, representing idiosyncratic fixed IWA.

In the presence of a quenched disorder, the number of customers may
evolve by a serie of cluster flips, or avalanches. If the disorder is strong enough
(i.e. the variance σ2 of Y is large with respect to the strength of the social
coupling J), there will be only small avalanches (There are numerous agents
following their own Hi). If σ2 is small enough, the phase transition occurs
through a unique “infinite” avalanche, similar to the case with the unique H
for all agents (section 15.2.3). This is called a “first order phase transition”
by physicists. In intermediate regimes, a distribution of smaller avalanches of
various sizes can be observed. It is useful to consider as exemple a sample of
a simulation, using the multi-agent framework Moduleco-Madkit (Gutknecht
and Ferber 2000; Phan 2003; Michel et al. 2005) 5.

3/10 	 0.544, Logit pseudo-random generator, seed = 190
(a-b) upstream (black)and downstream (grey) trajectories (c) circle with N = 2, 4, 8 and TC:

from grey to black

Fig. 15.4. Hysteresis in the trade-off between cost and adopters under synchronous
activation regime (Moduleco-Madkit: 1296 agents - synchronous activation regime)

Figure(s) 15.4.a-c shows for a set of particular experience with the same
distribution of IWA (seed = 190). Points are equilibrium rate of adoption for
the whole system for cost incremented in steps of 10−4 under the synchronous
activation regime (all agents update their behaviour at the same time). One
observes a hysteresis phenomenon with phase transitions around the theoret-
ical point of symmetry breaking: C∗ = H + J/2 = 1.25. Figures 15.4.a deals
with the “global” externality, while Figure 15.4.b corresponds to a “local”
externality (on a one-dimensional periodic lattice: the circle case, with two
nearest neighbours) with the same parameters and IWA distribution in both
cases. Figure 15.4.d shows the upstream branch (decreasing costs) of a circle
with nearest neighbours (N = 2, 4, 8) and the same global externality case
(TC) than on Figure(s) 15.4.a. Figure 15.4.a shows the details of straight hys-
teresis corresponding to the “global” externality (complete connectivity). In
this case, the trajectory is no longer gradual, like in the local interdependence
case on Figure 15.4.b. Along the upstream equilibrium trajectory (with de-
creasing costs) an avalanche arises for C = 1.2408, by a succession of cluster

5 For the simulations presented below, we have a logistic distribution where β =
π.
√

3/σ is the logistic parameter, H = 1, J = 1/2 and β = 10; (J.β = 5)
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flips, driving the system from an adoption rate of 30% towards an adop-
tion rate of roughly 87%. Along the downstream trajectory (with increasing
costs) the externality effect induces a strong resistance of the system against
a decrease in the number of adopters. The phase transition threshold is here
around C = 1.2744. At this threshold, the equilibrium adoption rate decreases
dramatically from 73 % to 12.7 %.

The threshold of exposure (TE) is the proportion of adopters in the lo-
cal neighbourhood of an agent sufficient enough to induce a change in his
behaviour (Valente 1995). For finite neighbourhood, this TE evolves by dis-
crete jump and therefore it is very sensitive to the size of the neighbourhood.
This threshold effect may be either favourable or unfavourable to adoption,
depending of the relative position of the agent with respect to the unbiased
situation. For instance let J = 1 and C = 1. The unbiased situation is such
as: C∗ −H = J/2, hence H = 0.5. If Hi = 0, 4 (the agent i is below the unbi-
ased situation), then C − Hi = 0.6; for N = 2 the TE2 is 2, say 100%; while
TE4 = 3 (75%) with N = 4 and TE8 = 5 (62,5%) with N = 8. Thus, in this
case, the relative TE (i.e. the rate of the TE over the neighbourhood) decreases
with the widening of the neighbourhood. Conversely, if the IWA is such as the
agent is above the unbiased situation say, Hi = 0, 6: then C − Hi = 0.4, the
TE2 is 1 (50%) for N = 2. This rate remains the same with N = 4 (TE4 = 2)
and with N = 8 (TE8 = 4). In this later case, we need a neighbourhood equal
or superior to N = 10 in order to reduce the relative TE below the relative
threshold of 50%. The finite size effect of the TE is then both discontinuous
and asymmetric.

For finite size population and finite neighbourhood, the equilibria distrib-
ution is very sensitive to the possibility of local clusters both with higher or
lower adoption with respect to the mean field case (complete connectivity or
social influence). This is related to both the discrete distribution of the thresh-
olds and the possibility of extreme situation (where an agent is surrounded
by neighbours all with either a small or a great IWA). Such effect is more
sensitive for low cost / high degree of adoption, where the adoption is slower
with local neighbourhood, due to the existence of clusters of non-adopters,
called “frozen zone”.

Figure 15.4.c shows the evolution of the rate of adoption for several
configurations of the network: one dimensional periodic (circle) with near-
neighbourhood of size 2, 4, 8 and complete connectivity (from light grey to
black respectively). In this case with 1296 agents, the negative effect of local
interdependence is clearer than the positive one (for low rates). In the case
under consideration, the widening of the neighbourhood has a little positive
effect on adoption. For relatively high cost / low rates of adoption, the number
of adopters is higher than for the full connectivity. For relatively small costs
(high rates of adoption), the existence of local interdependences (frozen zone)
has a strong negative effect, hence the number of customers is clearly smaller
than in the case of global influence, but this later effect is little attenuated by
the widening of the neighbourhood effect.
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a - the avalanche for p = 1.2408 (seed = 190) b - avalanche for p = 1.2415 (seed = 40)

parameters: H = 1, J = 0.5, β = 10 Moduleco: synchronous activation regime ).

Fig. 15.5. Examples of chronology and sizes of induced adoptions in the avalanche
at the phase transition under global externality in two single experiences with 1296
agents

In the case of a finite size sample, there is some local irregularities in
the discrete distribution of characteristics (IWP), even with “near-perfect”
pseudo-random generator. Therefore, the shape of an avalanche is completely
dependent on the realizations of Yi. Then, gaps in the ordered sequence of
the Yi produce fluctuations in the chronology of induced adoptions, as well
as possible multi-modal shape, like in Figure 15.5.b. Despite the non-generic
properties of such figures, this kind of historic profile remains relevant for
empirical experiments in finite size situations.

Figure 15.5.a shows the chronology of an avalanche in the case of the
upstream branch of the equilibrium trajectory, for C = 1.2407. The evolution
follows a smooth path, with a first period of 19 steps, where the initial change
of one customer leads to growing induced effects from size 2 to size 81 (6.25 %
of the whole population). After this maximum, induced changes decrease in
13 steps, including 5 of size one only. Figure 15.5.b shows a different case, with
more important induced effects, both in size and in duration (seed 40). The
initial impulsion is from a single change for C = 1.2415 with a rate of adoption
of 19.75 %. The first wave includes the first 22 steps, where induced changes
increase up to a maximum of 11 and decrease towards a single change. During
this first sub-period, 124 agents change (9.6 % of the whole population). After
step 22, a new wave arises with a growing size in change towards a maximum
of 94 agents both in step 48 and 49. The total avalanche duration is 60 steps,
where 924 induced agent changes arise (71 % of the population - 800 in the
second wave). As suggested previously, the steepness of the phase transition
increases when the variance σ2 of the logistic distribution decreases (increasing
β).

The closer the preference of the agents to each other, the greater the size
of avalanches at the phase transition (Figures 15.6.a-b). Figure 15.6.c shows
a set of upstream trajectories for different values of β taken between 20 and
5 (10 ≥ Jβ ≥ 5), in the case of global externality. The scope of the hysteresis
decreases with β ; for β < 5, there is no longer any hysteresis at all (remark
that intermediate positions in straight hysteresis are transitory equlibibrium
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a - large hysteresis for β = 20 b - narrow hysteresis for β = 9 c - upstream branch with 20 ≥ β ≥ 5

(a - c): total connectivity (TC)

Fig. 15.6. The trade-off between cost and adopters (synchronous activation regime)

(in light grey in 15.4.a) and finite size effect, and do not appear in the
analytical case with “infinite” population).
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Summary. In this work we analyze the time evolution of the wealth of a group
of agents in a public-investment-game scenario. These are part of a small-world
network, where connections depend on a probability p and investment depends on
a binary variable σ (motivation). This variable tries to emulate one’s perception of
other players’ actions. We study the effect of the connectivity on the wealth of the
group as well as the dynamics when idyosincratic types are introduced in the game.

16.1 Introduction

The list of publications on nontrivial phenomena which arise due to the inter-
play between microscopic (individual) rules and macroscopic (group) behavior
in the fields of complex and multiagent systems is extensive. In the context
of socioeconomic behavior, this has been thoroughly discussed by Durlauf [4].
Within this scenario we present a variation of a simple “public investment
game” [2]. In its original version, one wishes to model public spending on pub-
lic goods. Players can invest their money in a common pool, and profits are
equally distributed among all participants irrespective of their contributions.
Clearly it would be “fair” for people with similar amounts of money to invest
similar quantities. However individuals are different: each player, blind as to
what regards others’ contributions, would default and invest nothing if it were
rational. For purely rational players the dominant solution is to default.

To give the model a more realistic flavor we let agents interact and invest
according to the actions of their immediate neighbors. We do this by intro-
ducing a binary variable we call motivation, and whose update depends on a
random variable [7]. The aim is to simulate natural causes which might af-
fect the way players assess the investment. The return per agent is considered
to be a function of the average investment, in close relation to cooperative
game-theory.
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We start with periodic boundary conditions (players in a ring). To explore
more complex networks which allow agents to be influenced by others far away
from them, we also consider small-world networks [8]. Such networks can be
built from regular ones by giving each player a probability p of reconnecting
to another player chosen randomly.

In this paper we explore the dynamics of a fraction of agents who operate
at a deficit, given that each player starts the game with the same quantity of
money. We also measure the probability of a particular agent not losing all its
money up to time t as function of parameter p of the small-world. We study
the non-trivial dynamics that emerges out of this system by looking for the
density of motivated agents in the model and determining a phase diagram.

The paper is organized as follows: In section 16.2 we discuss other game-
theoretic settings which use the small-world metaphor. In section 16.3 we
define our model. In section 16.4 we study a case for which an exact solution
exists, namely in a complete graph. In section 16.5 we extend our studies to
small-world networks with arbitrary coordination number K. We also study
how the introduction of idiosyncratic agents into the system affects the dy-
namics of the global wealth. We close the paper with section 16.6.

16.2 Groups as Networks of Agents in Small-World
Scenarios

It is easy to recognize that networks of coupled individual elements are not
only a paradigm for studying artificial systems, but also an artifact that ap-
pears often in Nature and social systems. Watts and Strogatz [8] studied
networks of coupled elements through an analogy with the small-world phe-
nomenon (SW), which is based on the fact that in large societies there is
normally a shortcut between any two persons. A classical parallel is the “six
degrees of separation” concept [5]: there is a path of acquaintances with typical
length of six between most pairs of people in the United States.

In a work linking the SW and the Iterated Prisoners’ Dilemma (IPD) of
Nowak and May [6], Abramson and Kuperman [1] started out with a ring of
agents (i.e. those who only see their immediate left and right neighbors) and
allowed them to interact with agents located somewhere in the network. This
is represented by a graph with N vertices, each one connected to K vertices.
After an interaction, a “rewiring” process takes place for each vertex vi with
probability p and some connections are broken and replaced by connections
to vertices far from vi. p is thus a measure of the regularity of the network.

In the setting proposed by Abramson and Kuperman, N players are con-
nected, on average, to 2K vertices (after rewiring). A round of the game
consists of the interaction of every player with all neighbors and the sum of
the points collected based on a given payoff matrix. Strategies are to cooperate
or defect. After the interaction with all players in the “neighborhood” (here
not necessarily only the closest neighbors), players are allowed to inspect the
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profits collected by neighbors and imitate the one which has collected more
points as in [6], where the final rate of cooperation (simply the percentage
of agents whose tactic is cooperate divided by the total number of agents) is
32%. When the SW links are introduced, the rate of cooperation is influenced
by p.

In [3], the focus is on analyzing the performance of a society composed of
agents playing the IPD in the presence of agents with attachment to others.
Altruistic agents are interested in the good performance of their group as a
whole, as well as on their own, since the social group provides also a base
for support in case the agent itself is not performing well. Moreover the best
performance in the group will be imitated. Besides altruistic agents, the so-
ciety can also be populated with egoistic ones. In the context of the public
investiment game this was done in [7], with the result that the dynamics can
be completely different whether one has a larger percentage of altruistic or
selfish agents.

16.3 The Model in a Small-World Network

We consider a game of L investors or economic agents which, starting the
game with a quantity w0 of money, can invest a quantity Si. Agents invest
cooperatively, i.e. the average profit of the group influences the investment
motivation level of each agent. This is modelled by a binary variable σi where
σi = 1 means an agent is motivated while σi = 0 means it is not. This
abstraction aims at capturing issues such as insider information and economic
prospects as perceived by agents.

An agent i = 1, ..., L, in a small-world network built from a regular lattice
with arbitrary coordination K has a set of neighbors we denote ξi. We define
the invested quantity Si through

Si(t) = σi(t) + F ( ρi(t) ) (16.1)

where the function F ( ρi(t) ) depends on the density of motivated neighbors
of agent i at instant t, ρi(t) = (1/ |ξi|)

∑
j∈ξi

σj(t), as follows:

F ( ρi(t) ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v1(t) if ρi(t) > 1/2

v2(t) if ρi(t) = 1/2

v3(t) if ρi(t) < 1/2

where v1(t), v2(t) and v3(t) are arbitrary functions and |ξi| is the cardinality
of set ξi. For the sake of clarity we restrict our investment to four possibilities
Si ∈ {0, 1, 2, 3}, i.e.

vl(t) = 3 − l (16.2)



224 Roberto da Silva et al.

Table 16.1. Investment rules relating motivation levels to investment

σi (motivation) ρi (density of neighborhood) Si (investment)

0 < 1/2 0
0 = 1/2 1
0 > 1/2 2
1 < 1/2 1
1 = 1/2 2
1 > 1/2 3

where l = 1, 2, 3 (see table 16.1).
To update the motivation level of the agents, we represent the average

investment of agents in the t−th iteration as:

S(t) =
1

L

L∑
k=1

Sk(t) (16.3)

where periodic boundary conditions are imposed and Sk is given by (16.1).
We assume that the overall profit is modulated by a random variable r

(noise) uniformly distributed in r ∈ [−1, 1]. The return per agent is given
by:

gk(t) = (a + br)S(t) − Sk(t) . (16.4)

When b = 0 we have the deterministic (or noiseless) case. On the other hand,
if a = 1 and b = 1/2, profits (0 < r < 1) and losses (−1 < r < 0) are
allowed only within a range which depends on the average investment S(t).
Individually agents can be better off or not. At any given time t an agent has
an accumulated wealth given by

Wk(t + 1) = Wk(t) + gk(t) (16.5)

where Wk(1) = w0, k = 1, ..., L. We update the motivation at each time step
by the profit rate gk(t):

σk(t + 1) =

⎧⎪⎨
⎪⎩

1
2

(
1 + gk(t)

|gk(t)|
)

if gk(t) �= 0

0 otherwise

(16.6)

This update is based on a simple principle: an agent’s wealth relies on the
wealth of the group. However, since agents are autonomous and there is room
for cheating, we end up with two kinds of situations: one in which everyone
is cooperative, and another where different types of individual behavior can
be simulated. Before we explore the dynamics of our model we discuss in the
next section a case where analytical results can be obtained.
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16.4 The Game in a Complete Graph

We consider the noiseless scenario (b = 0) and all agents connected to one
another. If we call

ρ =
1

L

L∑
k=1

σk

the mean motivation then for a large number of agents (L → ∞) the difference
from ρ to any one of the local motivations ρi is less than 1/L. In this case the
approximation ρi = ρ can be used.

With this in mind and with the help of the real function h such that
h(x) = 0 if x < 0, h(x) = 2 if x > 0 and h(0) = 1 we can rewrite Si(t) as

Si(t) = σi(t) + h(ρi(t) − 1/2) = σi(t) + h(ρ(t) − 1/2)

where in the last inequality we used the large L assumption. The return per
agent is now given by:

gk(t) = aS(t) − Sk(t) = aρ(t) + (a − 1)h(ρ(t) − 1/2)− σk(t)

Fixed points

The first question we want to address is: how does ρ(t) behave? We first recall
that ρ = 0 is a fixed point of the system’s dynamics irrespective of the value
of a. For ρ = 1 to be a fixed point we need σk = 1 for all k at all times, i.e.
we need always a positive return gk. One is left with the task of determining
the correspoding values of a for this to happen. Before we proceed to these
cases, we note that another interesting point is ρ = 1/2 for a ∈ (2/3, 4/3). In
this case the return per agent is:

gk =
3

2
a − 1 − σk

If σk = 0, then gk > 0 and 0 → 1. For σk = 1 then gk < 0 and 1 → 0. Hence,
the two populations (motivated and unmotivated) exchange their role, but
the density ρ is constant, despite the oscillatory behavior of each individual
agent.

The ρ = 0 Attractor

We now determine the cases for which ρ0 = 0 is an attractor. For this to be
the case we require gk ≤ 0, since then some σk’s will flip to 0. But gk ≤ 0 is

aρ + (a − 1)h(ρ − 1/2)− σk ≤ 0

To verify the condition above for any value of σk it is sufficient that
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aρ + (a − 1)h(ρ − 1/2) ≤ 0

There are three cases to consider: If ρ < 1/2 then h(ρ − 1/2) = 0 and so the
condition is aρ ≤ 0. If ρ = 1/2 then h = 1 and this way we have aρ+(a−1) ≤ 0
(i.e. ρ ≤ 1

a −1). Since ρ = 1/2 this gives us a ≤ 2/3. The third case is ρ > 1/2.
Now h = 2 and then the condition is aρ + (a − 1)2 ≤ 0 (i.e. ρ ≤ 2

a − 2).
The information above gives an immediate basin for the ρ = 0 attractor,

but the basin itself can be larger. For example, fixing a ∈ [0, 2/3] and taking
0 < ρ < 1/2, the return per agent is:

gk = aρ + (a − 1)h(ρ − 1/2)− σk = aρ − σk

Those agents for which σ = 0 the return is positive: they change their moti-
vation to 1; those for which σ = 1 the return is negative and the motivation
becomes 0. Hence, the density changes to 1 − ρ > 1/2 and in one more inter-
action the point ρ = 0 is reached.

The same reasoning can be applied to the case a ∈ (2/3, 4/5], with 0 <
ρ < 1/2. The conclusion is that for all situations where ρ ≥ 3 − 2/a we have
the dynamics 0 → 1 and 1 → 0 as above, showing that the density goes to
1 − ρ. This again corresponds to the immediate basin of ρ = 0.

The ρ = 1 Attractor

Now we look for situations in which the attractor is the configuration where
all the agents remain motivated forever, i.e., σk(t) = 1 for all k and all t,
corresponding to ρ = 1.

In order to change from σk = 0 to σk = 1 we need gk > 0, in other words:

aρ + (a − 1)h(ρ − 1/2)− σk > 0

Again we would like to have the inequality above satisfied independently of
σk. For this it is sufficient to that:

aρ + (a − 1)h(ρ − 1/2)− 1 > 0

If ρ < 1/2 this is equivalent to ρ > 1/a; if ρ = 1/2 this gives a > 4/3. For
ρ > 1/2 then the condition is ρ > 3

a − 2.
As in the previous section, this gives the immediate basin of ρ = 1. Now

take ρ < 1/2 and such that ρ < 3 − 3/a (for a ≥ 1); if σk(t) = 0 then
gk = aρ > 0 showing that 0 → 1 and so the new density is at least 1 − ρ,
being on the basin of ρ = 1.

Oscillatory Cases and the Phase Diagram

We now try to find distinct kinds of behavior for the evolution of ρ in the
remaining part of the a × ρ diagram.
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Fig. 16.1. Phase diagram of the public investment game in the complete graph,
where each agent interacs with all (L − 1) remaining agents. Regions I, II and III
correspond respectively to fixed points ρ = 0, ρ = 1 and oscillatory behavior. The
fixed point ρ = 1/2 happens for a ∈ [2/3, 4/3].

If we start with ρ < 1/2, then the dynamics is 0 → 1 and 1 → 0, showing
that the density goes to 1 − ρ. Now, if ρ > 1/2 the dynamics in the region is
again 0 → 1, 1 → 0. Hence, each agent oscillates with period 2 and the density
is oscillatory with period 2, going from ρ to 1 − ρ and back to ρ. Finally we
show a phase diagram where all situations are explored. In region I, for all
initial (a, ρ0) the fixed point ρ = 1 is reached, while the same happens for ρ = 0
in region III. Region II represents the oscillatory behavior. The straight line
ρ0 = 1/2 for a ∈ [2/3, 4/3] represents the fixed point ρ = 1/2, which is a special
case of the more general oscillatory phase: half of the motivated (unmotivated)
agents change their motivation, becoming unmotivated (motivated).

16.5 Small-World Networks - Numerical Analysis

In this section we analyze the more general case of small-world networks. As
these case do not allow for an analytic solution, we present the results of our
simulations in what follows.

16.5.1 Numerical Phase Diagram for the Deterministic Case (b =
0) in the SW Network

We analyzed the time evolution of ρ(t) for small-world networks when b = 0.
In this case we considered values of a = 0, ..., 2 and ρ0 = 0, ..., 1, using the

steps of size Δa = 0.02 and Δρ0 = 0.01, i.e. ρ
(k)
0 = kΔρ0 and a(k) = kΔa,
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Fig. 16.2. Phase diagram of the public investment game without noise (b=0) in a
small world network for extremes cases p = 0 and p = 1 (Upper: 1 run; lower: 60
runs). The dark gray region depicts the oscillatory behavior, while light gray and
gray mean the regions of fixed points ρ = 0 and ρ = 1 respectively.

where k = 0, ..., 100. In this situation we observed the extreme cases in the
small worlds p = 0 and p = 1 the intermediate cases only showing a transition
between these two cases. We also discuss two situations: a) the phase diagram
with only one run and b) over a sample of 60 runs.

We have implemented an algorithm that identifies, for each pair (a(k), ρ
(k)
0 )

the behavior of ρ(t) × t. Only three cases were identified, namely fixed point
ρ = 0, fixed point ρ = 1 and oscillatory behavior of period 2.

In figure 16.2 we can observe that by taking a higher number of runs the
phase diagram region corresponding to ρ = 0 decreases significantly for p = 0
and this is even more pronounced for p = 1.
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Fig. 16.3. (a) Time evolution of the density of motivated agents for a = 1/2, b = 1,
ρ0 = 1/2, for different lattice sizes (L = 20, 40, 60, 80, 100) with K = 4. (b) A
comparison between a particular case with noise (b = 1) and no noise (b = 0).

16.5.2 Time Evolution of Bankruptcy-Related Measures in the
Small World

We have performed numerical simulations starting with half of the agents
motivated (ρ0 = 1/2) . These were randomly chosen within the small-world
networks, which on their turn were built from lattices with coordination K = 4
(i initially connected to nodes i − 2, i − 1, i + 1 and i + 2) and periodic
boundary conditions. We first measured the evolution of the average density
of motivated agents, considering several random initial conditions (different
configurations of the small world and of the motivation level of the agents
with fixed ρ0 = 1/2). In order to better understand the effect of neighbor
density alone we first considered the case p = 0.

We also explored the effect of finite size in the density of motivated agents.
Our results (see figure 16.3 (a) ) for the particular case with noise (a = 1/2
and b = 1) show a deviation from ρ(t) vs t for small values of L. In that
plot, we can also observe a tendency of the density towards a constant value
after approximately 20 MC-steps, where Ns = 1000 runs were perfomed to
compute the average. For L = 80 we also simulated the case without noise
a = 1/2 and b = 0. An oscillatory behavior for the density of motivated agents
is found, as can be seen in figure 16.3 (b). The noisy and noiseless cases are
depicted together. After the 27th MC-step the density oscillates between two
fixed values of density (ρ1 = 0.29947 and ρ2 = 0.62375).

We also assessed the possibility of agents going bankrupt. For this we
studied four small world configurations: p = 0, 0.1, 0.2, 0.3, and measured the
average fraction of bankrupt agents, that is

f(t) =
1

L
#{Wk(t) < 0} .

where we recall that Wk(0) = w0.
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Fig. 16.4. (a) Time evolution of the fraction of agents in a situation of bankruptcy.
(b) Probability of a randomly chosen agent not reaching bankruptcy.

For the simulations we considered w0 = 10. A plot of f(t) is shown in figure
16.4 (a). To quantify more precisely the influence of p on the bankruptcy, we
used the concept of first return probability Q(t):

Q(t) =
1

L
#{Wk(t) < 0}, Wk(t′) ≥ 0 for allt′ < t .

This quantity is the probability that an agent remains wealthy, that is
Wk(t′) > 0 for all t′ < t. Our results show that this probability decays with a
power law and Q(t) becomes less steep with increasing p (figure 4(b)).

16.5.3 Individualist Agents

In the noisy case (b = 1 and a = 1/2), we have evaluated the functions f(t) and
Q(t) for the regular lattice (small world p = 0), considering a concept defined
in this paper as individualist agent, that means, agents which act without
taking heed of their neighbors’ action. In this case the agent’s decision is based
on its proper information: if it is motivated, it invests Si = 3. Otherwise its
investment is Si = 0.

Defining the fraction of these players as φ, we have performed some tests
to determine its effect on the dynamics of W (t), Q(t), ρ(t) and f(t). In figure
16.5 we can observe that an increase of φ leads the systems towards ruin. From
this one may conclude that it is more satisfactory for the group to comunicate
before investing.

16.5.4 Decreasing Odds for Bankruptcy: A Complete Graph

We also analyzed the behavior of f(t) and Q(t) for the noisy case (a = 1/2
and b = 1) when agents form a complete graph. In this case no agent goes
bankrupt, since Q(t) = 1 and f(t) = 0 for all t > 0. This is interesting
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Fig. 16.5. Time evolution of measures W (t), Q(t), f(t) and ρ(t) as a function of
φ. We considered the cases of φ = 0, 0.01, 0.02, 0.03 ,0.04, 0.05, 0.1, 0.2, 0.3, 0.4,
and 0.5. Legends are the same for all figures. The inset plot in the bottom left figure
depicts φ = 0, showing that the wealth fluctuates around the initial value of w0 = 10

when compared to the dynamics of the game in small-world networks. The
main lesson is: to talk to all agents (which in practice might be impossible)
diminishes the risk and makes bankruptcy less probable (since f(t) = 0 and
Q(t) = 1).

It is important to notice that the density of motivated agents goes to 0
in the complete graph as it can be observed in figure 16.6. Thus, basically
the investment is blocked. In that figure we plot the wealth and density as
a function of time for different sizes of the graph. One may observe that the
wealth is practically constant after a given time.

16.6 Conclusions

We explored the emergent dynamics in a modified public investment game,
both in small-world networks and in a complete graph, where benefits are
determined by two parameters: a deterministic (a) and a random one (b).
Investment depends on the motivation level of an agent and of its neighbors.
We performed some simulations changing f(t) (fraction of bankrupt agents)
and Q(t) (probability that an agent does not go bankrupt up to time t) for
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Fig. 16.6. (a) Time evolution of wealth for a public investment game in the complete
graph. (b) Time evolution of density in the complete graph.

different small world configurations (parameter p), generated from regular
lattices with coordination K = 4. Our results show that both f(t) and Q(t)
depend on p. For the regular case (p = 0) we studied a noisy (a = 1/2 and
b = 1) and a noiseless (a = 1/2 and b = 0) situation. A finite-size dependence
is observed for the case with noise, whereas an oscillatory behavior is observed
in the noiseless case for the small world network.

Moreover, a phase diagram can be obtained in a simplified situation Si =
σi+ σi−1 for p = 0 and k = 2, as shown in [7]. Therefore, in this work we
have extended the results to obtain the phase diagram for the general case:
numerically for small-world networks and as a exact phase diagram for the
complete graph.

Our results also corroborate the idea that the probability of an agent going
bankrupt is zero even in the presence of fluctuations (a = 1/2 and b = 1) if
players form a complete graph. This indicates that information exchange is
key in the dynamics of the wealth of a group of investors.
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17.1 Introduction

Economists pay little attention to social norms and the processes by which
they are formed and change. This omission is regrettable because much eco-
nomic decision-making is influenced by social norms, and the result of such
decision-making may in turn influence social norms. One example is the de-
cision faced by mothers of pre-school children as to whether to remain in
employment or to stay at home and care for their children themselves. This
decision is subject to many economic factors, crucially the education and thus
the earning capacity of the mother, but is also known to be influenced by
social norms concerning appropriate ways of caring for pre-school children. It
is a decision that in turn has significant economic effects, for example on the
ability of European countries to meet employment targets and fund future
pensions.

In a study of mothers of pre-school children in the UK Himmelweit and
Sigala 2004 found that mothers’ attitudes were influenced by both the atti-
tudes of those around them and by their own experience. In particular, where
their behaviour was in conflict with their own attitudes, mothers were more
likely to change one or other of these, than when their behaviour and attitudes
were consistent with each other. They also found a change in attitude to be
more likely than behavioural change. These findings are consistent with the
psychological theory of cognitive dissonance, that people experience discom-
fort from a poor fit between attitudes and behaviour. Cognitive dissonance
can be resolved by changing behaviour, but it is at least as frequently resolved
by changing attitudes (Festinger 1957, Pungello and Kurtz-Costes 2000).

Mothers’ attitudes and behaviour changed not only as a result of cognitive
dissonance but also through social influence. It was found that mothers were
more likely to interact with, and therefore be influenced in their attitudes by,
others who behaved similarly to themselves. This suggests that it would be
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useful to build a model that combines such individual and social influences.
Such a model would be applicable to the wide class of situations in which
social norms influence decision-making not only directly, but also indirectly
through internalization of such norms into personal attitudes.

Several agent-based models of social influence have been developed. Gilbert
and Troitzsch 2005 discuss particularly two models: that of Latané et al. 1994
who use a simple plausible formula to calculate the “persuasive impact” of
local neighbours on an individual’s attitude, and Schelling’s 1971 even simpler
segregation model that bases a decision to move on the proportion of imme-
diate neighbours who are ethnically different to an individual. These simple
models of social influence give interesting emergent effects such as cluster-
ing. Using a “majority rule heuristic” similar to Schelling’s model, Miller and
Page 2004 discuss various models of social influence in which agents respond
in a binary manner to the strength of signals from other agents, which may
be in conflict with their own beliefs (functioning like cognitive dissonance
in our model). Picker 1997 also uses agent-based modelling to simulate the
emergence of social norms.

A powerful and well-known agent-based model developed by Axelrod 1997
shows how culturally homogeneous groups can form by modelling the trans-
mission of cultural features that are subject to social influence. Individual
agents, located in a two-dimensional grid, hold a vector of such “features”,
each of which can take a number of different categorical values, known as
“traits”. A “social influence event” is the random selection of an agent on the
grid to be the “active” cell, then one of its neighbours also at random. The
probability of interaction with the selected neighbour depends on the number
of the features they have in common. If an interaction occurs, the active agent
changes one of the features in which it differs from its neighbour to match the
neighbour’s.

This simple model has proved very rich in its implications. Axelrod shows
that starting from a random distribution of traits among agents, given time
a number of cultural regions consisting of agents with identical features will
result. In equilibrium, when no further interactions can take place, the agents
of such cultural regions have no features in common with those of neighbouring
regions. As expected, the equilibrium number of regions was found to increase
with the number of traits per feature. However, the number of regions in
equilibrium also fell with the size of the grid and with the number of features.
These results were less intuitive but could be explained by the power of the
social mechanism itself; both larger regions and a larger number of features
give more scope for social influence to make agents more similar to each other,
even if the range of possible difference was also increased.
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17.2 Cognitive Dissonance

This paper considers the results of introducing a new type of event to Axel-
rod’s basic model that represents an internal resolution of the cognitive disso-
nance experienced when attitudes are not in line with behaviour. In Axelrod’s
basic model 100 agents living on a 10 x 10 grid have five unidentified cultural
features with 10 possible trait values for each feature. In our model the first
two features are only binary and identified respectively as a particular form
of behaviour (such as 0 = “employed” or 1 = “at home looking after family”)
and a related attitude (such as 0 = “pro-employment for mothers” and 1 =
“pro-mothers staying at home”). In addition each agent has three further fea-
tures, representing other identified cultural characteristics that play a part in
social influence, each of which can take 10 trait values as in Axelrod’s basic
model. The model was implemented in the Repast agent-based modelling sys-
tem (North et al. 2006) with the random selection of an agent as an active
cell for a potential “social influence event” occurring at each Repast tick.

As expected from Axelrod’s results, binary features reduce the number of
regions in equilibrium considerably. In fact, as Axelrod showed, if all features
are binary there can be at most two final regions, but in practice such equi-
libria are rare and a monoculture of only one region is by far the most likely
result when they are binary features. Running an Axelrod type model but
with only two features binary and the remaining three taking 10 trait values,
convergence to a monoculture happened in 99.9% of cases.

17.2.1 Symmetric Dissonance Events

The innovation in our model is that there is an internal connection between
the first two features. If their trait values are not equal (i.e. at home looking
after family but pro-employment, or employed but pro-mothers staying at
home) then the agent is in a state of cognitive dissonance. An agent in this
state if selected for a “cognitive dissonance event” will change a trait value
to make the values of its first two features match. These internal “cognitive
dissonance events” are scheduled separately from the usual external Axelrod
social influence events between agents and occur with probability p at each
Repast tick on a randomly chosen agent, where p is a “cognitive dissonance
probability” parameter.

To investigate the effects of cognitive dissonance events, this model was
run 500 times for each value of p = 0.2, 0.4, 0.6, 0.8 and 1, and 1000 times for
p = 0, no cognitive dissonance events. Table 17.1 shows that the number of
equilibrium regions was predominantly 1 for all values of p, including 0, with
smaller frequencies of 2 to 8 regions. Multiple regions are slightly more likely
at higher values of p.

There is some evidence, therefore, that cognitive dissonance events reduce
the likelihood of complete cultural uniformity, but this effect is quite weak and
not strongly affected by the probability of these events. It happens because
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Table 17.1. Symmetric dissonance events: number of stable regions in equilibrium
from 500 runs each at 5 positive values of the cognitive dissonance event parameter,
p, and 1000 runs for p= 0 (no cognitive dissonance events)

0 .20 .40 .60 .80 1.00

1 999 484 465 467 456 458
2 1 12 27 20 30 29
3 4 4 6 8 6
4 3 3 4 5
5 2 1
6 2
7 1
8 2 1

cognitive dissonance events can in a few cases induce faster convergence to
an equilibrium that does not leave enough time to reach uniformity. The
slower process of cultural convergence without cognitive dissonance events
leaves enough time that, in all but one case above, convergence to a uniform
monoculture takes place.

This can be illustrated by comparing the time series plots of two different
runs with the same cognitive dissonance parameter that converge at different
rates. In Figure 17.1a convergence to 8 final regions was more rapid than in
Figure 17.1b which converged to a single region (note different scale). Also in
Figure 17.1a all cognitive dissonance was eliminated before complete conver-
gence to a multi-region equilibrium, while in Figure 17.1b convergence to a
monoculture occurred simultaneously with the elimination of cognitive disso-
nance.

Figure 17.2 shows the grid of agents for the exceptional case of 8 final re-
gions occurring at p = 0.8, corresponding to Figure 17.1a. The circles represent
mothers at home (32%) and rectangles represent employed mothers (68%). In
general, however, the simulations converged to a monoculture of either 100%
mothers at home or 100% employed mothers, with equal likelihood.

17.2.2 Asymmetric Dissonance Events

So far we have assumed that cognitive dissonance events are symmetrical
with regard to behaviour and attitude, that they are equally likely to involve
a change in behaviour or a change in attitude. However, economists (since they
like to assume fixed preferences) are more likely to assume people change their
behaviour rather than their attitudes, while the psychological theory of cogni-
tive dissonance suggests that attitude change may be more likely. So it seems
worthwhile to investigate the effect of an “asymmetric dissonance parameter”
q that controls the direction of dissonant events, and is the probability that
a cognitive dissonance event is a change of the agent’s attitude rather than
a change in the agent’s behaviour. A value of q = 0.5 therefore produces the
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Fig. 17.1. Time series plots of numbers of agents that are employed, pro-employment
and dissonant for
p = 0.8, (a) converged to 8 final regions (b) converged to 1 final region
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Fig. 17.2. Grid display with 8 final regions at p = 0.8

symmetric dissonance events discussed above, q = 1 produces an event that
always changes attitude, and q = 0 produces an event that always changes
behaviour.

Table 17.2 shows that for extreme anti-symmetry, i.e. cognitive dissonance
events that are only behaviour-changing or only attitude-changing, a larger,
though still small, proportion of the simulations did not converge to a mono-
culture than was the case for symmetric dissonance (Table 17.2 shows runs
just for q = 0, but q = 1 should produce similar results by symmetry). A
possible explanation for this is that asymmetric dissonance leads to a faster
elimination of dissonance and therefore on more occasions to convergence be-
fore complete uniformity has been achieved on other features.

Table 17.2. Asymmetric dissonance events: number of stable regions in equilibrium
from 500 runs each at 5 positive values of the cognitive dissonance event parameter,
p, with asymmetric dissonance parameter q = 0and 1000 runs for p= 0 (no cognitive
dissonance events)

0 .20 .40 .60 .80 1.00

1 999 456 457 457 450 440
2 1 36 32 23 31 32
3 6 9 13 13 24
4 1 4 2 1
5 1 2 2
6 2 2 2 1
7 1
8
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17.3 Broadcasting

In his original paper Axelrod explores the effects of cultural drift, random mu-
tations of the traits of agents. These have the effect of disrupting convergence
to a multi-region equilibrium, by allowing further social interaction events,
or even preventing convergence altogether. Klemm et al. 2005 uses the term
exogenous perturbations to describe this cultural drift mechanism. Cogni-
tive dissonance events could be described as endogenous perturbations, which
work in the opposite direction, aiding convergence and making multi-region
convergence more likely as Table 17.1 showed.

Broadcasting can be modelled as another form of exogenous perturbation,
originally suggested by Axelrod as an external agent with fixed traits inter-
acting at random with agents in the grid. To explore broadcasting as a tool of
policy, let us suppose there is a government keen on encouraging mothers into
employment. It has two alternative broadcast strategies. One is to send out
the same consistent pro-employment message repeatedly, using a constant set
of traits for the remaining three features, including “employed” for the behav-
iour feature. This could be thought of as a series of fixed broadcasts using an
identical image of a working mother expounding a pro-employment attitude.
The other strategy is to send out random broadcasts that are constant in
expounding a pro-employment attitude, but show mothers whose other four
features vary randomly (including whether the mother doing the broadcast is
herself in employment or not).

17.3.1 Fixed Broadcasts

The effect of introducing fixed broadcasts is greatly to increase the number
of final regions, to such an extent as to completely eliminate monocultures.
Increasing the rate of broadcasting increases the number of final regions.
These effects are counterintuitive: broadcasting could be expected to drive
the agents towards a monoculture; increasing the broadcast rate might be
thought to make a monoculture more likely. These counterintuitive results
may be explained by a strongly transmitted culture overriding possibilities of
sites changing their traits in other directions towards convergence. In other
words, high-rate global broadcasts of fixed messages promote local hetero-
geneity. For example, Figure 17.3 shows the effects of a fixed pro-employment
broadcast on the number of final regions with various levels of symmetric
cognitive dissonance events (q = 0.5). Recall from Table 17.2 that without
broadcasting the median number of regions in equilibrium was 1 for all levels
of p. Indeed without broadcasting 90% of all runs converged to a monoculture
except when p= 1.0, and even then 60 out of 500 did so. With broadcasting,
higher rates of p again increase the number of final regions, but at a much
higher level than before.

Another interesting and counterintuitive result concerns the efficacy of
broadcasts. Figure 17.4 plots the percentage of agents in employment for the
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Fig. 17.3. Clustered boxplots of number of final regions at 5 levels of b for a constant
pro-employment broadcast and 6 levels of p (25 runs per boxplot), for symmetric
cognitive dissonance events

runs that produced Figure 17.3. From this we can see that broadcasting has
the desired effect and employed mothers form a majority in all cases. (Recall
from Table 17.2 that without broadcasting the equilibrium position is a mono-
culture in the vast majority of cases, either 100% mothers employed or 100%
at home with family, with the average percentage of mothers in employment
being 50%.) So broadcasting increases the equilibrium percentage employed
on average and makes it more predictable. Counterintuitively, however, this
percentage is lower at higher broadcast rates – probably for the same reason
as before, that high-rate broadcasts promote faster convergence and hence
local heterogeneity. While the majority culture is identical to the broadcast
culture, pockets of alternative cultures survive in equilibrium that must differ
from the majority culture in all features.

Looking at the interaction with p, the cognitive dissonance parameter, Fig-
ure 17.4 suggests that cognitive dissonance events dilute the effect of broad-
casting. As Figure 17.3 showed, increasing levels of cognitive dissonance in-
crease the number of regions with alternative cultures, but Figure 17.4 shows
that these regions are then in total smaller and the majority culture more dom-
inant. (There appears to be little systematic difference between the effects of
symmetric and asymmetric dissonance events on the efficacy of broadcast-
ing, so only the case of symmetric dissonance events is shown. If anything,
behaviour-changing cognitive dissonance events (q = 0) are slightly less dis-
ruptive and attitude-changing cognitive dissonance events (q = 1) slightly
more disruptive of the effects of broadcasting on the percentage employed.)
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Fig. 17.4. Clustered boxplots of percent employed at 5 levels of b for a constant
pro-employment broadcast and 6 levels of p (25 runs per boxplot), for symmetric
cognitive dissonance events

Figure 17.5 shows a fairly typical final agent grid resulting from b = p =
1. The pro-employment culture has produced a prevailing culture of employed
agents (black squares) whose culture matches the broadcast culture in every
feature, while isolating 9 regions of agents not in employment whose cultures
are diverse and have no features in common with the dominant monoculture.

Fig. 17.5. Grid display with 10 final regions and 23% carers: b = 1 (pro-
employment), p = 1
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17.3.2 Random Broadcasts

Random broadcasts, like a fast enough constant stream of exogenous pertur-
bations, prevent the model ever converging. They are by themselves rather
ineffective in promoting the behaviour they want to encourage. Figure 17.6
shows the effect on the percentage of mothers employed at different levels
of intensity of a random pro-employment broadcast if there are no cognitive
dissonance events. Random pro-employment broadcasts, that is broadcasts
that are random in all features except their pro-employment attitude, do not
on average produce a higher level of employment. (Recall from Table 17.1
that without broadcasting or cognitive dissonance events convergence to a
monoculture happens in 99.9% of cases – so although the median for b = 0
in Figure 17.6 is 100% this is just chance and in almost as large a number
of cases there is convergence to a monoculture where the number of mothers
employed is 0%, with the average number of employed mothers across all cases
being 50%.) This is not surprising because without any specific connection be-
tween attitudes and behaviour, however effective broadcasts are at changing
attitudes they will have no specific effect on changing behaviour in a related
direction. However, Figure 17.6 shows that random broadcasting does have
an effect on the number of regions so that monocultures are eliminated and
in all equilibria cultures with mothers in employment coexist with cultures in
which mothers are at home looking after their families.

Fig. 17.6. Clustered boxplots of percent employed at 6 levels of b for a random
pro-employment broadcast with no cognitive dissonance events (p = 0)
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If there is cognitive dissonance, however, Figure 17.7 shows that the ef-
fectiveness of random broadcasts varies considerably according to the type
of cognitive dissonance events (recall there was little such difference in the
case of fixed broadcasts). Even low levels of behaviour-changing dissonance
events can turn random broadcasts into highly effective tools of behavioural
change, more effective than fixed broadcasts, and higher levels of such cog-
nitive dissonance events can make random broadcasts so effective that they
produce median levels of employment of almost 100%. As with fixed broad-
casts, less frequent random broadcasts are more effective than more frequent
ones, particularly when there is a high rate of behaviour-changing dissonance
events.

The effects when there are attitude-changing dissonance events could not
be more different. Attitude-changing dissonance events make random broad-
casts worse than useless in changing behaviour, reducing the mean numbers
employed to well below 50%, and higher levels of such dissonance events de-
press the numbers of employed mothers yet further. More frequent broadcasts
in this case reduce the counterproductive effect of having the broadcasts at
all, a result similarly contradictory to that found in the case of behaviour-
changing dissonance events where broadcasts are highly effective but a higher
rate of broadcasts less effective than a lower one.

Symmetric broadcasts have an intermediate effect, raising the median rate
of employment in all cases. But there is no discernable pattern as to whether
increasing the overall rate of broadcasting or whether higher or lower rates of
cognitive dissonance events makes broadcasting more or less effective. In this
case, random broadcasts are more effective than nothing but in general less
effective than fixed broadcasts (see Figure 17.4).

These rather startling differences can be explained perhaps by remem-
bering that random broadcasts are constant only in their attitude feature.
Fixed broadcasts can affect only those agents who already have some fea-
ture in common with the transmitted culture. As Figure 17.3 showed, fixed
broadcasts therefore tend to leave pockets of cultures completely at variance
with the dominant culture they promote. Random broadcasts, because their
non-attitude features vary to take on the whole range of possible values, can
influence any agent and therefore can be effective in changing any agent’s
attitude.

However, unlike fixed broadcasts that have an equal impact on the behav-
iour and attitudes of the agents they affect, the only change random broad-
casts systematically promote is in attitudes. Random broadcasts therefore
need behaviour-changing dissonance events to make a systematic impact on
behaviour. When there are such events, random broadcasts are highly effective
in promoting employment. Because random broadcasts reach everyone they
are more effective than fixed broadcasts when the only dissonance events are
behaviour-changing. In the symmetric case (q = 0.5) behaviour-changing dis-
sonance events still occur, but there are also counteracting attitude-changing
dissonance events.
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Fig. 17.7. Clustered boxplots of percent employed at 5 levels of b for random pro-
employment broadcasts and 5 levels of p (25 runs per boxplot) for (a) behaviour-
changing cognitive dissonance events (q = 0) and (b) symmetric cognitive dissonance
events (q = 0.5) and (c) attitude-changing cognitive dissonance events (q = 1.0)
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The puzzle then is why attitude-changing cognitive events reduce the num-
bers of employed mothers in equilibrium. They have this effect both in the
symmetric case when compared with the case with behaviour-changing dis-
sonance events alone (q = 1), and most spectacularly in the case of only
attitude-changing cognitive behaviour (q = 0) when random broadcasting be-
comes counterproductive. The reason must be something to do with the way
these dissonance events dilute the effects of broadcasting by encouraging faster
convergence to more diverse regions. However it not obvious why this should
work to such an extent as to reduce the numbers of mothers employed.

17.4 Dynamism, Polarization and Equilibria

Axelrod’s analysis of his original model focused on convergence to equilibria.
Figure 17.1 shows that the convergence to the simplest equilibrium (one re-
gion) can be slow and complex with large shifts in the numbers of employed,
whereas convergence to a more complex equilibrium (eight regions) can be
fast and relatively uninteresting. Exogenous perturbations (broadcasting or
cultural drift) or endogenous perturbations (cognitive dissonance events) fur-
ther compromise convergence to complete equilibrium, though they may be
important factors which produce interesting effects.

These observations lead us to consider measures of dynamism, polariza-
tion and “degrees of equilibria” that are less orientated to the concept of a
final equilibrium. Latané et al. 1994, a paper that seems to have been largely
neglected by agent-based modellers, discuss such measures in the context of
social attitudes and behaviour. (We do not consider their suggested measures
of clustering, since we use Axelrod’s method of counting cultural regions.)

17.4.1 Dynamism

The dynamism of individual simulations can be assessed subjectively from
time series plots such as those in Figure 17.1, but to analyze many simula-
tions and draw objective conclusions requires formal measures of dynamism.
Following Latané et al., we measure the dynamism of our models by the av-
erage number of changes of attitude per agent until convergence or within
the first 100,000 Repast ‘ticks’, whichever happens first. We investigated the
dynamism of our model by running 25 simulations at 6 levels of dissonance
event probabilities, p, 6 levels of broadcast probabilities, b, 3 levels of the
asymmetric dissonance parameter, q = 0, 0.5 & 1, and for fixed and random
broadcasts.

Consider first fixed broadcasts, which always converge. Table 17.3 shows
the average number of changes in attitude before convergence with fixed
broadcasts at different levels of broadcasting, and symmetric cognitive dis-
sonance events (q = 0.5). A table for dynamism of behaviour would show a
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similar pattern of values, as would tables for q = 0 and q = 1 with fixed
broadcasts, for dynamism of both attitude and behaviour.

Clearly broadcasting decreases dynamism and increasing rates of broad-
casts decrease it further. Broadcasting may produce more complex equilibria
(see Figure 17.4, but less dynamic paths to those equilibria. Table 17.3 also
shows that when there is broadcasting the effect of increasing the rate of disso-
nance events is to reduce dynamism in the model. This is consistent with the
earlier remark that cognitive dissonance events can induce faster convergence
to equilibrium – leaving less time for attitudes to change, although it does
not seem to apply consistently when b= 0, perhaps because in these cases,
as Table 17.1 showed, convergence to a monoculture remains by far the most
likely outcome, even at high levels of p.

Table 17.3. Attitude dynamism (mean of 25 runs per cell) for 6 values of b (rows)
and 6 values of p (columns), fixed broadcasts and symmetric dissonance events.

p
b 0.0 0.2 0.4 0.6 0.8 1.0

0.0 24.5 30.28 30.54 34.79 19.88 24.85
0.2 2.90 2.00 2.31 1.67 2.19 2.40
0.4 1.56 1.47 1.34 1.00 .99 .97
0.6 1.03 1.04 .86 .76 .65 .63
0.8 .98 .75 .58 .62 .51 .52
1.0 .80 .69 .59 .57 .51 .43

Where convergence does not occur, the level of dynamism measures the
average number of changes of attitudes and behaviour over a period (100,000
Repast ticks) that is longer than convergence usually takes. So, unsurprisingly,
the level of dynamism measured as a result of random broadcasts which do
not converge is greater than for fixed broadcasts which do. With random
broadcasts levels of dynamism differ more between attitude and behaviour,
and across different levels of q.

Tables 17.4 and 17.5 show average dynamism of attitude with random
broadcasts in the cases of behaviour-changing dissonance events (q = 0) and
attitude-changing dissonance events (q = 1). Table 17.4 shows that if there are
only behaviour-changing dissonance events broadcasting suppresses dynamism
of attitude for any value of pand increasing rates of broadcasting events sup-
press it further. Cognitive dissonance events reduce dynamism throughout.
This must be by reducing opportunities for attitude change through inter-
action with neighbouring sites or broadcasts. That random broadcasting de-
creases dynamism in this case must be through it effectively creating a unifor-
mity of attitude and thus reducing opportunities for attitude change thorough
interaction with neighbouring sites.
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Table 17.4. Attitude dynamism (mean of 25 runs per cell) for 6 values of b (rows)
and 6 values of p (columns), random broadcasts and behaviour-changing dissonance
events.

p
b 0.0 0.2 0.4 0.6 0.8 1.0

0.0 30.85 25.39 16.11 18.32 19.63 16.55
0.2 5.79 3.70 3.00 2.87 2.57 2.33
0.4 3.26 2.06 1.87 1.63 1.59 1.30
0.6 2.22 1.48 1.40 1.24 1.15 1.19
0.8 1.48 1.29 1.17 1.14 1.02 1.06
1.0 1.40 1.17 1.04 .91 .87 .86

Table 17.5 shows average attitude dynamism when there are only attitude-
changing dissonance events. When p= 0 there are no cognitive dissonance
events and random broadcasting decreases dynamism and increasing rates
of broadcasts decrease it further (this is the same situation as in the previ-
ous table in the absence of cognitive dissonance events; though the somewhat
different numbers reflect different runs). With attitude-changing cognitive dis-
sonance events, dynamism is greater than without them, though higher rates
of cognitive dissonance reduce dynamism and increased rates of broadcasts
increase dynamism. It must be that dissonance events again reduce opportu-
nities for attitude change through interaction with neighbouring sites. But an
indirect opportunity for attitude change arises in this case through attitude-
changing cognitive dissonance events consequent upon behavioural changes
brought about by random broadcasts. The difference in attitude dynamics in
Tables 17.4 and 17.5 may go some way towards explaining why random broad-
casts are so effective when cognitive dissonance events are behaviour-changing
and so ineffective, indeed counterproductive, when they are attitude-changing.

Table 17.5. Attitude dynamism (mean of 25 runs per cell) for 6 values of b (rows)
and 6 values of p (columns), random broadcasts and attitude-changing dissonance
events.

p
b 0.0 0.2 0.4 0.6 0.8 1.0

0.0 25.56 23.22 18.39 19.54 15.85 12.91
0.2 5.65 50.99 41.26 35.12 32.18 29.81
0.4 2.58 62.68 52.99 47.61 44.09 42.17
0.6 1.97 68.83 63.34 58.50 54.29 53.06
0.8 1.56 72.86 71.61 67.85 65.34 62.97
1.0 1.50 76.19 78.69 75.84 75.13 72.58
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17.4.2 Degrees of Equilibria

Latané et al. also discuss what they call degrees of equilibria, which they
classify into four types: unification, stable equilibria, dynamic equilibria and
disordered evolution. Unification occurs when the agents reach a consensus
and converge on a common attitude. We have seen that this is a common
outcome of our models. Stable equilibria are identified as incompletely po-
larized systems in which further interaction no longer leads to change. This
describes Axelrod’s convergence to more than one stable region, which our
models are less likely to achieve without internal or external perturbations.
Dynamic equilibria represent cases where the system achieves global order in
terms of polarization and clustering at an intermediate level, but where indi-
vidual agents continue to change. We have also observed this in our models
by viewing the grid of agents in individual simulations. Disordered evolution
describes cases that exhibit continued change at the agent level without the
emergence of any global order. Such cases are characterized by high dynamism,
many cultural regions, and polarization that depend on the initial state of the
model. We have not observed this in our models. Even where there is disequi-
librium, there is some evidence of order at the agent level when we view the
grid of agents. We also do not find it associated with high dynamism.

17.5 Conclusion

This paper illustrates some of the issues that can be discussed using a model
of social influence that also incorporates cognitive dissonance and broadcast-
ing as internal and external perturbations, respectively. Cognitive dissonance
has been modelled as a process by which agents resolve a bad fit between their
attitudes and their behaviour by changing one or other of these. Broadcasting
has been modelled as the creation of an external agent interacting randomly
with any of the agents on the grid. This paper has shown that adding processes
of cognitive dissonance to Axelrod’s model of social influence speeds up con-
vergence in some cases, making the survival of cultural heterogeneity more
likely. Broadcasts have been shown to influence behaviour, but occasionally
in an unintended direction and they are generally less effective if repeated too
frequently. Broadcasts that convey a fixed message are effective in promoting
the intended behaviour but are less effective the higher the rate of cognitive
dissonance events. Broadcasts that are random in features other than an atti-
tude promoting the intended behaviour can be more or less effective than fixed
broadcasts depending on the prevailing type of cognitive dissonance events.
These different types of broadcast vary in their effectiveness at least in part
because they result in different levels of dynamism of attitudes and behaviour.

This suggests that a government interested in using broadcasting to change
behaviour, to promote employment among mothers of young children for ex-
ample, would do well to study the prevailing modes of cognitive dissonance.
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If the prevailing mode is attitude-changing, that is that faced with a bad fit
between attitudes and behaviour people tend to change their attitude, the
government would achieve its aims most effectively through a not too fre-
quently repeated fixed broadcast that promotes both the desired behaviour
and the attitude that supports it. If, on the other hand, the dominant mode
of cognitive dissonance resolution is for people to change their behaviour, the
government would do better with a random broadcast that promotes a pro-
employment attitude but through a variety of different images that speaks
to agents across the whole range of cultures. Provided these broadcasts are
not repeated too often they can be spectacularly effective, promoting nearly
universal conformity to the behaviour the government wishes to encourage.
If there are both types of reactions to cognitive dissonance, the best proce-
dure to follow depends on the balance between the two; at equal rates of the
two types of cognitive dissonance events fixed broadcasts are somewhat more
effective than random ones.
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Summary. This paper addresses the problem of finding the appropriate method
for conducting empirical validation in AB models. We identify a first set of issues
that are common to both AB and neoclassical modellers and a second set of is-
sues which are specific to AB modellers. Then, we critically appraise the extent to
which alternative approaches deal with these issues. In particular, we examine three
important approaches to validation that have been developed in AB economics: in-
direct calibration, the Werker-Brenner approach, and the history-friendly approach.
Finally, we discuss a set of open questions within empirical validation.

18.1 Introduction

Agent-based (AB) researchers in economics have enjoyed significant success
over the last twenty years. The models that have been developed indicate
the viability and vitality of an alternative to mainstream neoclassical eco-
nomics. Indeed, deep philosophical differences exist between neoclassical and
AB modellers regarding the world faced by real-world agents and, hence, the
type of models that it is useful for economists to construct. AB modellers
reject the aprioristic commitment of new classical models to individual hyper-
rationality, continuous equilibrium, and representative agents. Everything in
the neoclassical world can, in principle, be known and understood. It is often
assumed that the entire set of objects in the world (e.g. techniques of produc-
tion, or products) is known at the outset. The opposite is the case in the AB
world. Here the set is unknown, and agents must engage in an open-ended
search for new objects. Associated with this distinction are important differ-
ences with regards to the types of innovative learning and adaptation that are
considered, definitions of bounded rationality, the treatment of heterogene-
ity amongst individual agents and the interaction between these individuals,
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and whether the economic system is characterized as being in equilibrium or
far from equilibrium. Mainstream economists have often recognized the sig-
nificance of the AB Weltanschauung, and have reacted by extending their
own modelling framework to incorporate (certain) aspects of heterogeneity,
bounded rationality, learning, increasing returns, and technological change.
Another sign of the vitality of the AB community has been the development
of its own specialist international journals and annual conferences, and the dif-
fusion of its ideas to other areas such as management science, political science
and to policy circles.

Nevertheless, there is a perceived lack of robustness in AB modelling, due
to the problematic relationship between AB models and empirical data. There
is a lack of standard techniques not only for constructing and analyzing AB
models, but also to conduct empirical validation. Key areas of debate include:
is a ‘realist’ methodology appropriate? Why should empirical validation be
the primary basis for accepting or rejecting a model? Do other tests of model
validation exist than the reproduction of stylised facts? If we do proceed down
the path of empirical validation, then how should one relate and calibrate the
construction of parameters, initial conditions, and stochastic variability in AB
models to the existing empirical data? Which classes of empirically observed
objects do we actually want to replicate? How dependable are the micro and
macro stylised facts to be replicated? To what extent can we truly consider
output traces to be stylised facts or, alternatively, counterfactuals? What are
the consequences, for the explanative power of a model, if the stylised facts
are actually ‘unconditional objects’ that only indicate properties of stationary
distributions and, hence, do not provide information on the dynamics of the
stochastic processes that generated them?

The aim of this paper is to provide a critical overview of how AB modellers
have been tackling the issue of empirical validation. A strongly heterogeneous
set of approaches can be found in the AB literature. An important (and novel)
contribution of the paper is a taxonomy that maps the different dimensions of
the empirical validation approaches found in AB models. In the next section
we shall draw attention to some crucial issues of empirical validation, faced
by both AB and neoclassical modellers.

18.2 Core Issues of Empirical Validation

Any model isolates some features of an actual phenomenon. It is usually as-
sumed, in economics as in any other science, that some causal mechanism (de-
terministic or non-deterministic) has produced the data. We call this causal
mechanism “real-world data generating process” (rwDGP). A model approxi-
mates portions of the rwDGP by means of a “model data generating process”
(mDGP). The mDGP must be simpler than the rwDGP and generates a set
of simulated outputs. The extent to which the mDGP is a good representa-
tion of the rwDGP is evaluated by comparing the simulated outputs of the
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mDGP with the real-world observations of the rwDGP. We identify a set of
key methodological issues associated with this process of backward induction.
These issues are generic in empirical validation, and so apply to neoclassical
and AB economists alike.

The first issue is how to deal with the trade-off between concretisation
and isolation. Faced with the essential complexity of the world, scientific (not
only economic) models proceed by simplifying and focusing on the relation-
ships between a very limited number of variables. Is it possible to model all
the different elements of the rwDGP? How can we possibly know all the dif-
ferent elements of the rwDGP? Leading economists (for example, J.S. Mill
and J. M. Keynes) have in the past expressed serious doubts about whether
we can expect to have models that are fully concretised. In a highly complex
world, a fully concretised model would be a one-to-one mapping of the world
itself! Thus, economists usually agree that models should isolate some causal
mechanisms, by abstracting from certain entities that may have an impact on
the phenomenon under examination [13]. A series of open questions remains.
How can we assess that the mechanisms isolated by the model resemble the
mechanisms operating in the world? In order to isolate the mechanisms, can
we make assumptions ‘contrary to fact,’ that is, assumptions that contradict
the knowledge we have of the situation under discussion? This also related
to the trade-off between analytical tractability and descriptive accuracy that
is faced by all theoreticians seeking to model markets and other economic
systems. Indeed, the more accurate and consistent is our knowledge about
reality with respect to assumptions, and the more numerous the number of
parameters in a model, the higher is the risk of failing to analytically solve
the model. By contrast, the more abstract and simplified the model, the more
analytically tractable it is. The neoclassical paradigm comes down strongly
on the side of analytical tractability.

This brings us to the second core issue of empirical validation: instru-
mentalism versus realism. Realism, roughly speaking claims that theoretical
entities ‘exist in the reality,’ independent of the act of inquiry, representation
or measurement [14]. On the contrary, instrumentalism maintains that theo-
retical entities are solely instruments for predictions and not true descriptions
of the world. A radical instrumentalist is not much concerned with issues of
empirical validation, in the sense that (s)he is not much interested in making
the model resemble mechanisms operating in the world. His/her sole goal is
prediction. Indeed, a (consistent) instrumentalist is usually more willing than
a realist to ‘play’ with the assumptions and parameters of the model in or-
der to get better predictions. While the neoclassical paradigm has sometimes
endorsed instrumentalist statements à la Friedman [7], it has never allowed a
vast range of assumption adjustments in order to get better predictions. In
this sense it fails to be consistent with its instrumentalist background.

The third issue is related to the choice of a pluralist or apriorist method-
ology. Methodological pluralism claims that the complexity of the subject
studied by economics and the boundedness of our scientific representations
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implies the possibility of different levels of analysis, different kinds of assump-
tions to be used in model-building, and legitimacy of different methodological
positions. Apriorism is a commitment to a set of a priori assumptions. A cer-
tain degree of commitment to a set of priori assumptions is normal in science.
Often these assumptions correspond to what Lakatos [9] called the ‘hard core’
assumptions of a research program. But strong apriorism is the commitment
to a set of a priori (possibly contrary to the facts) assumptions that are never
exposed to empirical validation (e.g. general equilibrium and perfect ratio-
nality). Theory is considered prior to data and it is denied the possibility of
interpreting data without theoretical presuppositions. Typically, strong apri-
orist positions do not allow a model to be changed in the face of anomalies,
and encourages the researcher to produce ad hoc excuses whenever a refuta-
tion is encountered. Lakatos [9] dubbed the research programs involved with
such positions as ‘degenerating.’

The fourth issue regards the under-determination or identification prob-
lem. This is the problem that different models can be consistent with the data
that is used for empirical validation. The issue is known in the philosophy of
science as the ‘under-determination of theory by data.’ In econometrics, the
same idea has been formalised and labelled ‘the problem of identification.’ As
Haavelmo [8] noted, it is impossible for statistical inference to decide between
hypotheses that are observationally equivalent. He suggested specifying an
econometric model in such a way that (thanks to restrictions derived from
economic theory) the problem of identification does not arise. The under-
determination problem is also strictly connected to the so-called Duhem-Quine
thesis: it is not possible to test and falsify a single hypothesis in isolation. This
is because any hypothesis is inevitably tied to some auxiliary hypotheses. Aux-
iliary hypotheses typically include background knowledge, rules of inference,
and experimental design that cannot be disentangled from the hypothesis we
want to test. Thus, if a particular hypothesis is found to be in conflict with the
evidence, we cannot reject the hypothesis with certainty, since we do not know
if it is the hypothesis under test or one of the auxiliary hypotheses which is
at odds with the evidence. As shown by Sawyer et al. [16], hypothesis testing
in economics is further complicated by the approximate nature of theoretical
hypotheses. The error in approximation, as well as the less systematic causes
disturbing the causal mechanism object of modelling, constitutes an auxil-
iary hypothesis of typically unknown dimension. For example, in time-series
econometric models a distinction is made between ‘signal’ (which captures
the causal mechanisms object of interest) and noise (accounted by the error
terms). But it may be the case, as pointed out by Valente [17], that noises are
stronger than signals, and that the mechanisms involved undergo several or
even continuous structural changes. Econometricians have adopted sophisti-
cated tests which are robust to variations in the auxiliary hypotheses (see, for
example, [10]). Nonetheless, the Duhem-Quine thesis still undermines strong
apriorist methodologies that do not check the robustness of the empirical re-
sults under variations of background assumptions.
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18.3 A Taxonomy of the Existing Approaches

A discrete set of approaches for empirical validation, not only different with
each other but different to those developed within neoclassical economics,
have been developed by the AB community. We suggest that there are two
reasons for this heterogeneity. First, AB modellers are interested in phenom-
ena such non-linearities, stochastic dynamics, non-trivial interactions among
agents, and feedbacks between the micro and the macro level. These are not
amenable to traditional equilibrium modelling approaches and tools. One of
the consequences is that AB modellers face an additional set of issues that are
not faced by neoclassical modellers. Second, and relatedly, the highly diverse
structural content of AB models means they need to be analyzed in very dif-
ferent ways. We propose a taxonomy that maps out the key areas in which
AB researchers differ.

The first dimension is the nature of the objects under study. This deter-
mines the stylised facts (empirically observed facts) that the model is seeking
to explain. Significant differences exist with respect to the nature of the ob-
jects being studied in AB models. Where neoclassical modellers are interested
in quantitative change, AB modellers are equally interested in qualitative
change of economic systems themselves. For instance, there are AB models
that investigate how R&D spending affects the qualitative nature of macro-
economic growth. Other AB models investigate its quantitative impact, or else
seek to explain some statistically observed quantitative property of aggregate
growth (e.g. its autocorrelation patterns). Another important distinction is
between AB models that seek to investigate a single phenomenon, and those
that jointly investigate multiple phenomena. For instance, a model may con-
sider the properties of productivity and investment time-series, in addition
to the properties of aggregate growth. Transient versus long-run impact is a
further distinction. For example, there are AB models that examine the ef-
fect of R&D spending on growth along the diffusion path (the transient) of
a newly introduced technology. Other AB models are only concerned with
the magnitude of a technologys long-run impact (when the economic system
has stabilised somewhat). Finally, an important distinction exists between
AB models that investigate micro distributions and macro aggregates. The
former are concerned with the dynamics of industry-level distributions, such
as a cross-section of firm productivity distributions, for a particular sector, in
a particular year. The latter are concerned with longer time-series data for
nation states, or the world economy, over a number of years.

A second dimension in which AB models differ is in the goal of the analy-
sis. AB models tend to deal with in-sample data. In-sample data is relevant
when one is interested in describing or replicating observed phenomena. Out-
of-sample exercises, although they are less frequently carried out by AB econo-
mists, are essential for the sake of policy evaluation.

A third dimension concerns the nature of the most important modelling as-
sumptions. Some models contain many degrees of freedom, others do not. For
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example, agents in AB models may be characterised by many variables and
parameters. Their decision rules may, in turn, be highly-parameterised. Al-
ternatively, agents and decision rules may be described in a very stylised way.
Individual decision rule sets and interaction structures may be exogenously
fixed. They may change over time. Change may be driven by exogenous, sto-
chastic factors. Alternatively, change may be driven by agents endogenously
selecting new decision rules and interaction structures according to some meta-
criteria (as it happens in endogenous network formation models, see [6]).

The fourth and final dimension is the methodology of analysis. In order
to thoroughly assess the properties of an AB model, the researcher needs to
perform a detailed sensitivity analysis. This sensitivity analysis should, at the
very least, explore how the results depend on (i) micro-macro parameters, (ii)
initial conditions, and (iii) across-run variability induced by stochastic ele-
ments (e.g. random initial conditions, and random individual decision rules).

There are three important approaches to empirical validation within AB
economics: indirect calibration [5], [4], the Werker-Brenner approach to em-
pirical calibration [18], and the history-friendly approach [12], [11].

The indirect calibration approach is based on a four-step procedure. In the
first step, the modeller identifies a set of stylised facts that (s)he is interested in
reproducing and/or explaining with a model. Stylised facts typically concern
the macro-level (e.g. the relationship between unemployment rates and GDP
growth) but can also relate to cross-sectional regularities (e.g. the shape of the
distributions on firm size). In the second step, along with the prescriptions of
the empirical calibration procedure, the researcher builds the model in a way
that keeps the microeconomic description as close as possible to empirical and
experimental evidence about microeconomic behaviour and interactions. This
step entails gathering all possible evidence about the underlying principles
that inform real-world behaviours (e.g. of firms, consumers, and industries)
so that the microeconomic level is modelled in a not-too-unrealistic fashion.
In the third step, the empirical evidence on stylised facts is used to restrict
the space of parameters, and the initial conditions if the model turns out to be
non-ergodic. In the fourth and final step, the researcher should deepen his/her
understanding of the causal mechanisms that underlie the stylised facts being
studied and/or explore the emergence of ‘fresh’ stylised facts (i.e. statistical
regularities that are different to from the stylised facts of interest), against
which the model can be validated ex post). This might be done by further
investigating the subspace of parameters that resist to the third step, i.e. those
consistent with the stylised facts of interest.

A stream of recent AB contributors to the field of industry and market
dynamics has been strongly rooted in the four-step empirical validation proce-
dure just presented. For example, Fagiolo and Dosi [4] study an evolutionary
growth model that is able to reproduce many stylised facts about output
dynamics, such as I(1) patterns of GNP growth, growth-rates autocorrela-
tion structure, absence of size-effects, etc., while explaining the emergence of
self-sustaining growth as the solution of the trade-off between exploitation of
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existing resources and exploration of new ones. Similarly, Fagiolo et al. [5]
present a model of labour and output market dynamics that is not only able
to jointly reproduce the Beveridge curve, the Okun curve and the wage curve,
but also relates average growth rates of the system to the institutional set-up
of the labour market.

The Werker-Brenner approach is a three-step procedure for calibrating AB
models. The first two steps are consistent with all calibration exercises. The
third step is novel. Step 1 uses existing empirical knowledge to calibrate initial
conditions and the ranges of model parameters. As mentioned above, AB mod-
els contain many dimensions, including the set of assumptions about agents
behaviour, their actions, interactions, causal relationships, and the simplify-
ing assumptions of the model. Werker-Brenner propose that, where sensible
data are not available, the model should be left as general as possible, i.e.
wide ranges should be specified for parameters on which there is little or no
reliable data.

Step 2 involves empirical validation of the outputs for each of the model
specifications derived from step 1. Through empirical validation, the plausi-
ble set of dimensions within the initial dimension space is further reduced.
It is possible to run the model specification and generate a Monte Carlo
set of micro and macro time-series data for that particular combination of
empirically-plausible parameter values. The resulting time-series data — one
for each parameter combination — can be thought of as a particular ‘theoreti-
cal realisation’ of the model that is being tested. Of course, any two time-series
may overlap to a large extent. This is to be expected since the combinations
of parameter values that are being tested are likely to be similar in some
dimensions, while different in others. Having generated a set of theoretical
realisations for each model specification, one is able to compare these outputs
with real-world data. The real-world data that we observe are an ‘empirical
realisation’ that is generated by the rwDGP that we are trying to model.
The Werker-Brenner approach advocates the use of Bayesian inference proce-
dures in order to conduct this output validation. Each model specification is
assigned a likelihood of being accepted based on the percentage of ‘theoreti-
cal realisations’ that are compatible with each ‘empirical realisation.’ In this
way, empirically observed realisations are used to further restrict the initial
set of model specifications (parameter values) that are to be considered. The
modeller only retains those parameter values (i.e. model specifications) that
are associated to the highest likelihood by the current known facts (i.e. em-
pirical realisations). Model specifications that conflict with current data are
discounted.

From a methodological perspective, it is step 3 of the Werker-Brenner ap-
proach that is of particular interest. The aim is to find an explanation to the
phenomena being studied by exploring the remaining set of model specifica-
tions. This is achieved through methodological ‘abduction.’ Abduction is a
process that seeks to describe and explain empirical facts in terms of their
underlying structures [18]. In practice, this involves a further validation ex-
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ercise for all empirical realisations that can be collected. Here, however, the
modeller focuses on the shared properties and the characteristics shared by
all surviving model specifications in order to identify the invariant properties
of the underlying structural model. The authors argue that “these [shared]
characteristics can be expected to hold also for the real systems (given the
development of the model has not included any crucial and false premises)”
[18]. If the characteristics within a group of model specifications differ, then
this also offers important insights. “It can be examined which factors in the
model are responsible for the differences. Hence, although we will not know
the characteristics of the real systems in this case, we will obtain knowledge
about which factors cause different characteristics” [18].

While the Weker and Brenner’s calibration approach addresses the over-
paramete-risation problem by reducing the space of possible ‘worlds’ that are
explored in an AB model, the history-friendly approach offers an alternative
solution to this problem. Like the calibration approaches discussed above, it
seeks to bring modelling more closely ‘in line with the empirical evidence’ and
thereby constrains the analysis to reduce the dimensionality of a model. The
key difference is that this approach uses the specific historical case studies of
an industry to model parameters, agent interactions, and agent decision rules.
In effect, it is a calibration approach which uses particular historical traces in
order to calibrate a model.

In part, the history-friendly approach represents an attempt to deal with
criticisms levelled at early neo-Schumpeterian AB models of technological
change. Two of the key protagonists of history-friendly modelling, R. Nelson
and S. Winter, were founding fathers of neo-Schumpeterian AB modelling.
While the early models were much more micro-founded and empirically-driven
than contemporary neoclassical models, empirical validation was weak. There
was a lack of thorough sensitivity and validation checks and empirical val-
idation, when carried out, tended to consist of little more than a cursory
comparison of outputs generated by a just a handful of simulation runs with
some very general stylised facts. Further, the early models contained many
dimensions and so it was rather easy to generate a few outputs that matched
some very general observations (the over-parameterisation problem).

In terms of our taxonomy, the history-friendly approach is strongly quan-
titative and mainly focuses on microeconomic transients (industrial paths of
development). In this approach a good model is one that can generate multiple
stylised facts observed in an industry. The approach has been developed in a
series of papers. Key amongst these are [12] and [11]. In [12], Malerba, Nelson,
Orsenigo and Winter outlined the approach and then applied it to a discus-
sion of the transition in the computer industry from mainframes to desktop
PCs. In [11], the approach was applied to the pharmaceutical industry and
the role of biotech firms therein. Through the construction of industry-based
AB models, detailed empirical data on an industry informs the AB researcher
in model building, analysis and validation. Models are to be built upon a
range of available data, from detailed empirical studies to anecdotal evidence
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Table 18.1. Taxonomy of dimensions of heterogeneity in empirical validations of
AB models

Approach Domain of Which kind of data How to employ What to do

Application should one employ? data? first?

-Micro (industries, -Assisting in -First validate,
Indirect markets) -Empirical data model building then indirectly

Calibration -Macro (countries, -Validating calibrate
world economy) simulated output

-Assisting in
Werker- -Micro (industries, -Empirical data model building -First calibrate,
Brenner markets) -Historical -Calibrate initial then

-Macro (countries, knowledge conditions and validate
world economy) parameters

-Validating
simulated output
-Assisting in

History- -Micro (industries, -Empirical data model building -First calibrate,
Friendly markets) -Casual, historical -Calibrate initial then

and anecdotic conditions and validate
knowledge parameters

-Validating
simulated output

to histories written about the industry under study. This range of data is used
to assist model building and validation. It should guide the specification of
agents (their behaviour, decision rules, and interactions), and the environment
in which they operate. The data should also assist the identification of initial
conditions and parameters on key variables likely to generate the observed
history. Finally, the data are to be used to empirically validate the model by
comparing its output (the simulated trace history) with the actual history of
the industry. It is the latter that truly distinguishes the history-friendly ap-
proach from other approaches. Previous researchers have used historical case
studies to guide the specification of agents and environment, and to identify
possible key parameters. The authors of the history-friendly approach suggest
that, through a process of backward induction one can arrive at the correct set
of structural assumptions, parameter settings, and initial conditions. Having
identified the correct set of ‘history-replicating parameters,’ one can carry on
and conduct sensitivity analysis to establish whether (in the authors’ words)
‘history divergent’ results are possible.

Table 18.1 summarizes the main characteristics of the three different ap-
proaches. The first dimension, in which these approaches differ, is the domain
of application. The direct and indirect calibration approaches can, in princi-
ple, be applied to micro and macro AB models (e.g. to describe the dynamics
of firms, industries, and countries). By contrast, the history-friendly approach
only addresses micro dynamics. A second dimension of heterogeneity is the
type of data that are used for empirical validation. In addition to empirical
datasets, the Werker-Brenner approach advocates the use of historical knowl-
edge. The history-friendly approach allows one to employ casual and anecdotic
knowledge as well. The third dimension is the way in which data is actually
used. All three approaches use data to assist model building, as well as val-
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idating the validation of the simulated outputs of models. Unlike the other
two approaches, indirect calibration does not directly employ data to cali-
brate initial conditions and parameters. The fourth dimension is the order in
which validation and calibration is performed. Both the Werker-Brenner and
the history-friendly approaches first perform calibration and then validation.
By contrast, the indirect calibration approach first performs validation, and
then indirectly calibrates the model by focusing on the parameters that are
consistent with output validation.

18.4 Open-ended Issues and Conclusions

There is a set of core issues that affect all the approaches and which (so far)
remain unresolved. In this concluding section we shed some light on that.

1. Alternative strategies for constructing empirically-based models. There
is intense debate about the best way to actually construct empirically-based
models, and to select between alternative models. What happens, for instance,
if there are alternative assumptions and existing empirical data does not assist
in choosing between them? A number of different strategies exist for select-
ing assumptions in the early stages of model building [3]. One strategy is
to start with the simplest possible model, and then proceed to complicate
the model step-by-step. This is the KISS strategy: ‘Keep it simple, stupid!’ A
very different strategy is the KIDS strategy: ‘Keep it descriptive, stupid!’ Here
one begins with the most descriptive model one can imagine, and then sim-
plify it as much as possible. The third strategy, common amongst neoclassical
economists, is TAPAS: ‘Take A Previous model and Add Something.’ Here
one takes an existing model and successively explores the assumption space
through incremental additions and/or the relaxation of initial assumptions.

2. Problems that arise as a consequence of over-parameterisation in AB
models. Whatever the strategy employed, the AB modeller often faces an
over-parameter-isation problem. AB models with realistic assumptions and
agent descriptions invariably contain many degrees of freedom. There are two
aspects to the over-parameterisation problem. Firstly, the dimensions of the
model may be so numerous that it can generate any result. If this is the case,
then the explanative potential of the model is little better than a random
walk. Secondly, the causal relations between assumptions and results become
increasingly difficult to study. A possible strategy is to use empirical evidence
to restrict the degrees of freedom, by directly calibrating initial conditions
and/or parameters. Then, one can indirectly calibrate the model by focussing
on the subspace of parameters and initial conditions under which the model
is able to replicate a set of stylised facts. Unfortunately, this procedure still
tends to leave the modeller with multiple possible ‘worlds.’

3. The usefulness and implications of counterfactuals for policy analysis
How does one interpret the counterfactual outputs generated by a model? It
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is tempting to suggest that outputs which do not accord with empirical ob-
servations are counterfactuals, and that the study of these counterfactuals are
useful for policy analysis. Cowan and Foray [2] suggest that it is exceedingly
difficult, in practice, to construct counterfactual histories because economic
systems are stochastic, non-ergodic, and structurally evolve over time. As
AB models typically include all these elements in their structure, Cowan and
Foray argue that using (evolutionary) AB models to address counterfactual-
like questions may well be misleading. More generally, comparing the outputs
generated by AB models with real-world observations involves a set of very
intricate issues. For example, Windrum [19] observes that the uniqueness of
historical events sets up a whole series of problems. In order to move beyond
the study of individual traces, we need to know if the distribution of out-
put traces generated by the model mDGP approximates the actual historical
traces generated by the rwDGP under investigation. A way to circumvent
the uniqueness problem is to employ a strong invariance assumption on the
rwDGP, thereby pooling data that should otherwise be considered a set of
unique observations. For example, one typically supposes that cross-country
aggregate output growth rates come from the same DGP. Similarly, it is sup-
posed that the process that driving firm growth does not change across indus-
tries or time (up to some mean or variance scaling). This allows one to build
cross-section and time-series panel data. Unfortunately we cannot know if the
suppositions are valid. But this is often not possible in practice. Consider
the following example. Suppose the rwDGP in a particular industry does not
change over time (i.e. it is ergodic). Even if this is the case, we do not typically
observe the entire distribution of all observations but rather a very limited set
of observations — possibly only one, unique roll of the dice. The actual history
of the industry we observe is only one of a set of possible worlds. So how do
we know that the actual historical trace is in any sense typical (statistically
speaking) of the potential distribution? If we do not know this, then we have
nothing against which to compare the distributions generated by our model.
We cannot determine what is typical, and what is atypical.

4. Definition of sufficiently strong empirical tests. The fundamental dif-
ficulties in defining strong tests for model outputs is highlighted by Brock’s
[1] discussion of ‘unconditional objects’ in economics. Empirical regularities
need to be handled with care because we only have information on the prop-
erties of stationary distributions. The data that we observe does not provide
information on the dynamics of the stochastic processes that actually gener-
ated them. Therefore, replication does not necessary imply explanation. For
example, many evolutionary growth models can generate similar outputs on
differential growth-rates between countries, technology leadership and catch-
up, even though they differ significantly with respect to the behaviour and
learning procedures of agents, and in their causal mechanisms [19]. Similarly,
the Nelson and Winter [15] model replicates highly aggregated data on time
paths for output (GDP), capital and labour inputs, and wages (labour share
in output), but these outputs can also be replicated by conventional neoclassi-
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cal growth models. In the same vein, there might be many different stochastic
processes (and therefore industry dynamic models) that are able to generate,
as a stationary state, a power-law distribution for the cross-section firm size
distribution. Although one may be unable to narrow down a single model,
we may be able to learn about the general forces at work, and to restrict the
number of models that can generate a set of statistical regularities [1]. There-
fore, as long as the set of stylised facts to be jointly replicated is sufficiently
large, any ‘indirect’ validation could be sufficiently informative, because it
can effectively help in restricting the set of all stochastic processes that could
have generated the data displaying those stylised facts. Another way out the
conditional objects critique would be to not only validate the macro-economic
output of the model, but also its micro-economics structure, e.g. agents be-
havioural rules. This requires one to only include in the model individual
decision rules (e.g. learning) that have been validated by empirical evidence.
Of course, this would require highly detailed and reliable data about micro-
economic variables, possibly derived from extensive laboratory experiments.

5. Availability, quality and bias of datasets. Empirically-based modelling
depends on high quality datasets. Unfortunately, the datasets that exist are
invariably pre-selected. Not all potential records are retained; some are for-
tuitously bequeathed by the past but others are not captured. Datasets are
constructed according to criteria that reflect certain choices and, as a conse-
quence, are biased. As econometricians know only too well, it may simply be
the case that data that would have assisted in a particular discussion has sim-
ply not been collected. A further and often neglected problem is that standard
econometric methods are influenced by prevailing theoretical orthodoxy.
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Summary. We provide explanations for the results of the Levy, Levy and Solomon
model, a recent simulation model of financial markets. These explanations are based
upon mathematical analysis of a dynamic model of a market with an arbitrary
number of heterogeneous investors allocating their wealth between two assets. The
investors’ choices are endogenously modeled in a general way and, in particular, con-
sistent with the maximization of an expected utility. We characterize the equilibria
of the model and their stability and discuss implications for the market return and
agents’ survival. These implications are in agreement with the results of previous
simulations. Thus, our analytic approach allows to explore the robustness of the
previous analysis and to expand its spectrum.

19.1 Introduction

The goal of this paper is to explore analytically the framework underlying
simulations of the so-called Levy, Levy and Solomon (henceforth LLS) model.
The model was introduced in [6] and further results were presented in [7]
and [9], among others. See also [8] for extensive discussion. The motivation
behind the model was to investigate whether some financial anomalies (like
excess volatility or autocorrelation of returns) can be explained by relaxing
the traditional assumption of classical finance about the presence of a fully-
informed and rational representative agent. The LLS framework assumes the
presence of heterogeneous agents whose market impact depends on their past
performances. In the words of its authors ([8], p. 143):

“The LLS model incorporates some of the main empirical findings
regarding investor behavior, and we employ this model to study the
effect of each element of investor behavior on asset pricing and market
dynamics.”

The model has been shown to qualitatively explain many of the financial
anomalies, but all its results are based on simulations. The criticism of the
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simulation approach usually points at a huge number of degrees of freedom,
i.e. dimensions of a set consisting of (i) all possible parameters, (ii) realizations
of the random variables and (iii) initial conditions. This leads to the feeling
that “everything one wants to obtain” can be obtained in the heterogeneous
world. In other words, the absence of a closed form solution makes it difficult
to believe that the results are robust. As a reply to that criticism, many ana-
lytic models of financial markets with heterogeneous agents appeared, see [5]
for a recent review. On the other hand, an analytic approach is limited due to
the high non-linearity of the models with heterogeneous agents. For example,
the agents’ wealth evolution is usually neglected in analytic contributions.
Therefore, both analytic and simulation approaches have to co-exist and to
supplement each other. As we show with our analysis, the analytic investi-
gations of the LLS model can effectively supplement the results of previous
simulation exercises.

Our analytic model of the LLS framework starts off with a pure exchange,
two-assets economy, where agents invest according to different rules. The
framework is consistent with the CRRA (Constant Relative Risk Aversion)
behavior, so that the individual demand for the risky asset is expressed as a
fraction of the agent’s wealth. Consequently, the price and agents’ wealths are
determined simultaneously, and, moreover, agents with different wealth levels
have different impact on the price realization.

Models in [2, 3, 4] are predecessors of our model. In particular, as in
[3], we model the agents’ behavior by means of generic investment functions,
mapping the available information on the current investment choice. However,
we substantially deviate from these papers since we introduce a more realistic
dividend process. Instead of assuming a constant dividend yield, we analyse
the case where the dividend is growing at a given constant rate. This system
corresponds to the deterministic skeleton of a market where dividend follows
a geometric random walk. We provide equilibrium and stability analysis for
this skeleton, which sheds light on the behavior of the stochastic LLS model,
where the growth rate of dividends is random.

The direct application of our analytic model follows from the fact that the
market structure we use is the same as in simulations of the LLS model. In
[6, 7, 8, 9] the agents are expected utility maximizers having power utility
function. One of the obstacles on the way to explore such setting analytically
is the absence of a closed-form solution for the corresponding optimization
problem. This obstacle has played a role in arguments in favor of simulations.
However, in our framework with investment functions the precise solutions are
not necessary, since the analytic results are expressed in terms of the general
functions and can be illustrated geometrically. The difficulty of dealing with
a power utility function is overcome, and comparative statics exercises can be
easily performed, analogously to what has been done in [1]. Thus, our analysis
allows to explain simulation results that alternatively have to be described in
an rather vague fashion as in the following quote from [9] (p.568, 569):
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“Looking more systematically at the interplay of risk aversion and
memory span, it seems to us that the former is the more relevant
factor, as with different [risk aversion coefficients] we frequently found
a reversal in the dominance pattern: groups which were fading away
before became dominant when we reduced their degree of risk aversion.
[...] It also appears that when adding different degrees of risk aversion,
the differences of time horizons are not decisive any more, provided
the time horizon is not too short.”

The rest of the paper is organized as follows. In Section 19.2 the analytic
model is presented. In Section 19.3 the main results of the equilibrium and
stability analysis are summarized in a few propositions. In Section 19.4 we
apply these results and, therefore, offer a rigorous explanation of the findings
in [7] and [9], among others. The analytic results also help to discuss the
robustness of the simulation results with respect to the different assumptions.
We also present some further results in order to characterize the dynamics
when the equilibria are unstable. Section 19.5 concludes.

19.2 Model Structure

Let us consider N agents trading in discrete time in a two-asset economy with
a riskless asset giving a constant interest rate rf > 0 and constant supply
(normalized to 1) of risky asset paying a random dividend Dt. The price of
the riskless asset is fixed to 1, and the price Pt of the risky asset is fixed
through market clearing. Let Wt,n stand for the wealth of agent n at time t
and xt,n for its share invested in the risky asset. The dividend is paid before
trade starts, so the wealth evolves as

Wt+1,n = (1 − xt,n)Wt,n (1 + rf ) +
xt,n Wt,n

Pt
(Pt+1 + Dt+1) . (19.1)

The price at time t is fixed through the market clearing condition∑N

n=1
xt,n Wt,n = Pt . (19.2)

Assume that the agent’s investment share xt,n does not depend upon the
wealth. The resulting demand is consistent with the one derived from the
maximization of a constant relative risk aversion (CRRA) utility function.
Moreover the investment shares are independent of the contemporaneous price
and bounded between zero and one, xt,n ∈ (0, 1), for all t and n. Both assump-
tions are consistent with previous simulations of the LLS model and simplify
the analysis substantially. Notice that according to (19.1), the wealth does
depend upon the contemporaneous price, so that price and wealth are simul-
taneously determined by the market clearing condition (19.2). Thus, (19.1)
and (19.2) give the evolution of the state variables Wt,n and Pt over time
implicitly, provided that the investment shares {xt,n} are specified.
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Concerning the latter we further assume that for each agent n there exists
an investment function fn such that

xt,n = fn(It), (19.3)

where It = {Dt, Dt−1, . . . , Pt−1, Pt−2, . . . } is the information set available to
the agents at time t. Agents’ investment decisions evolve following individual
prescriptions. The generality of the investment functions allows a big flexibility
in the modeling of the agents’ behaviors. Formulation (19.3) includes as special
cases both technical trading, when agents’ decisions are driven by the observed
price fluctuations, and more fundamental attitudes, e.g. when the decisions
are made on the basis of the price-dividend ratio. It also includes the case of
constant investment strategy, occurring when agent assumes the stationarity
of the ex-ante return distribution.

For our application in Section 19.4 it is important to stress that (19.3)
includes those investment behaviors which are derived from expected utility
maximization with power utility U(W, γ) = W 1−γ/(1 − γ), where γ > 0 is
the relative risk aversion coefficient. Indeed, solution of such a problem has a
wealth independent investment share. This property holds for any distribution
of the next period return which the agent is assumed to perceive now and
for any risk aversion. However, the solution is unavailable in explicit form.
Consequently, the analysis of the LLS model in [6, 7, 8, 9] rely on numeric
solutions. Since the results of Section 19.3 are valid for any given functional
form f , provided some easy-to-check general properties, we are able to perform
an analytic analysis of the LLS model even when agents maximize expected
utility with power utility function.

Accordingly with the LLS model, assume that Dt = Dt−1 (1 + g̃), where
the growth rate, g̃, is an i.i.d. random variable whose mean is g. Below we
perform an analysis of the deterministic skeleton of the dynamics triggered by
this stochastic process, and we fix the growth rate of dividends to a constant
value g.

With some algebra one can show that the implicit dynamics described in
(19.1) and (19.2) can be made explicit. The resulting system is written in terms
of the price return kt+1 = Pt+1/Pt − 1, dividend yield yt+1 = Dt+1/Pt and
agents’ relative wealth shares in the aggregate wealth ϕt,n = Wt,n/

∑
m Wt,m

as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yt+1 = yt
1 + g

1 + kt

kt+1 = rf +

∑
m

(
(1 + rf ) (xt+1,m − xt,m) + yt+1 xt,m xt+1,m

)
ϕt,m∑

m xt,m (1 − xt+1,m)ϕt,m

ϕt+1,n = ϕt,n
(1 + rf ) + (kt+1 + yt+1 − rf )xt,n

(1 + rf ) + (kt+1 + yt+1 − rf )
∑

m xt,mϕt,m

xt+1,n = fn

(
kt, kt−1, . . . , kt−L; yt+1, yt, . . . , yt−L

)
.

(19.4)
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The numerator of the fraction in the right-hand side of the third equation
in (19.4) represents the wealth return of agent n. Thus, the relative wealth
changes in accordance with the agent’s performance relative to the average
performance, where the return of individual wealth should be taken as a
performance measure. The second equation in (19.4) stresses the role of the
agents’ relative wealths in the return determination: the richer agents have
higher influence on the market. Finally, the last equation in (19.4) specifies
the information set It in terms of the same variables as other equations. For
the further analysis we assume that agents base their behavior on the finite
number of past price returns and dividend yields. Their memory span L can
be arbitrarily large, however.

19.3 Equilibrium Return and Agents’ Survival

Given the arbitrariness of the size of population N and absence of any specifi-
cation for the investment function, the analysis of the dynamic behavior gen-
erated by system (19.4) is highly non-trivial in its general formulation. One
may, indeed, expect that nothing specific can be said about the dynamics.
Let us, however, limit ourselves to the “equilibrium” situations, correspond-
ing to the fixed points of system (19.4). In this Section we investigate how
such equilibria can be characterized, under which conditions they represent
the long-run behavior of the system (in other words, when they are stable),
and which agents have positive wealth shares, i.e. survive, in the equilibria.
The proofs of all statements are available upon request.

19.3.1 Location of Equilibria

The following result allows us to classify all possible equilibria into two classes,
depending upon the values of two exogenous variables.

Proposition 1. Let us consider the equilibrium of the system (19.4) given by
the dividend yield y∗, return k∗, investment shares (x∗

1, . . . , x
∗
n) and wealth

distribution (ϕ∗
1, . . . , ϕ

∗
n).

The two following cases are possible:

(i). g > rf . Then k∗ = g, and all survivors (agents with non-zero wealth
shares) have the same investment share x∗, which together with y∗ satisfies

g − rf

y∗ =
x∗


1 − x∗
. (19.5)

(ii). g ≤ rf . Then k∗ = rf and y∗ = 0.

In both cases the wealth shares of survivors are arbitrary positive numbers sum-
ming to 1, while the agent’s investment shares satisfy x∗

n = fn(k∗, . . . , k∗; y∗, . . . , y∗),
with corresponding k∗ and y∗.
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This result shows that the equilibrium price return is k∗ = max(g, rf ). If
the dividend growth rate is smaller than rf , the dividend yield converges to
zero, and the risky asset asymptotically yields the same return as the riskless
asset. In this case, the equilibria described in Proposition 1(ii) are referred as
no-equity premium equilibria (NEPE). The investment shares of agents
are unambiguously determined through the investment functions, while the
wealth shares are free of choice, so any number of agents can survive in such
equilibria. Notice that NEPE imply zero dividend yield and, therefore, are
unfeasible, strictly speaking. They can be observed asymptotically, however.

If the dividend grows fast enough, so that g > rf , the equilibrium div-
idend yield y∗ depends on agents’ behaviors. From (19.5) one can easily
show that the risk premium in such an equilibrium is positive and equal to
(g − rf )/x∗. Consequently, the equilibria from Proposition 1(i) are called the
equity premium equilibria (EPE). Even if the EPE can have any number
M ∈ {1, . . . , N} of survivors, all of them must behave identically and invest
x∗. This is the key result for getting a simple geometric characterization of the
EPE. Indeed, it implies that all possible couples “dividend yield – survivor’s
investment share” belong to a one-dimensional curve, which is introduced
below.

Definition 1. The Equilibrium Market Line (EML) is the following function

l(y) =
g − rf

y + g − rf
defined for y > 0. (19.6)

Now it follows from (19.5), that the dividend yield in the EPE with M sur-
vivors (which are the first M agents, without loss of generality) should satisfy
to M equations

l(y∗) = fn(g, . . . , g; y∗, . . . , y∗) ∀n ∈ {1, . . . , M}.
In other words, the dividend yield in the EPE can be found as an intersection
of the EML with M one-dimensional functions representing the “diagonal”
cross-sections of the original investment functions by the set{

kt = kt−1 = · · · = kt−L = g; yt+1 = yt = · · · = yt−L = y
}
. (19.7)

The left panel of Fig. 19.1 illustrates the EPE in the market with two
different agents, whose investment functions (more precisely, diagonal cross-
sections of the original investment functions) are shown as thin lines marked
as I and II. Their three intersections with the EML, shown as a thick line, give
all the possible EPE. At equilibrium S the agent I is the only survivor, so that
ϕ∗

1 = 1. The dividend yield y∗ at this equilibrium is the abscissa of the point S,
while the investment share of the survivor, x∗

1, is the ordinate of S. Finally, the
investment share of the second agent can be found as a value of his investment
function at y∗. Notice that in this equilibrium x∗

1 > x∗
2. Analogously, the

variables are determined in other two equilibria. In particular, agent I is the
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Fig. 19.1. Location and stability of equilibria for g > rf . Left Panel: EPE are
intersections of the EML with the investment functions; Right Panel: Stability of
equilibria for L = 1.

only survivor at equilibrium UI , while at UII the second agent survives, ϕ∗
2 =

1.
In all equilibria illustrated in Fig. 19.1 only one agent survives. In the case

of more then one survivors, Proposition 1(i) implies that their investment
functions should have a common intersection with the EML. Such situation
is rather special, while the illustrated example can be classified as “generic”.

Finally, with some simple algebra, one can characterize the agents’ wealth
growth rates in different equilibria.

Corollary 1. (i). The wealth return of agent n is equal to 1 + rf + x∗
n(g −

rf )/x∗ at any EPE. Thus, the wealth of all survivors grows at the same
rate g.

(ii). At the NEPE the wealth of all the agents grows at the same rate rf .

19.3.2 Stability of Equilibria

The next natural question concerns the stability of the equilibria characterized
in Proposition 1. In this paper we investigate this question only for the case
g > rf , i.e. only for the equity premium equilibria. The following general
result holds.

Proposition 2. The EPE, described in Proposition 1(i), where the first M
agents survive, is stable if and only if the following conditions are met:

1) the equilibrium investment shares of the non-surviving agents are such
that

x∗

(
1 − 2(1 + g)/(g − rf )

)
< x∗

m < x∗
 ∀m ∈ {M + 1, . . . , N} . (19.8)

2) after eliminating all non-surviving agents, the behavior of survivors
generates stable dynamics.
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This Proposition gives an important necessary condition for stability of the
EPE. Namely, investment shares of non-surviving agents must satisfy (19.8).
The leftmost inequality is always satisfied for reasonable values of g and rf ,
while the rightmost inequality shows that the survivors should behave more
aggressively in equilibrium, i.e. invest higher investment share, than those
who do not survive. This result is intuitively clear, because, according to
Corollary 1, the most aggressive agent has a higher wealth return at the EPE.
Proposition 2 implies the instability of equilibria UI and UII in the example
shown on the left panel of Fig. 19.1. In the stable equilibrium the investment
shares of non-surviving agents should belong to the gray area.

If condition (19.8) is satisfied, the non-survivors can be eliminated from
the market. When is the resulting equilibrium stable? We answer this question
only for the case of single survivor with investment function dependent upon
the average of past L total returns

xt = f
(∑L

τ=1

(
yt−τ + kt−τ

)
/L

)
. (19.9)

This special case will be important in the applications of Section 19.4. Stan-
dard stability analysis leads to the following result.

Proposition 3. Let (x∗, y∗, k∗) be an EPE with one survival agent. The EPE
is asymptotically stable if and only if all the roots of polynomial

Q(μ) = μL+1 − 1 + μ + · · · + μL−1

L

(
1 + (1 − μ)

1 + g

y

) f ′(y∗ + g)

l′(y∗)
(19.10)

lie inside the unit circle.

From Section 19.3.1 it follows that the equilibrium yield at the EPE is given
as a solution of l(y) = f(y + g). Thus, the last fraction in the polynomial
(19.10) gives the relative slope of the investment function and the EML at
the equilibrium. On the EML plot, this is the relative slope of the cross-section
of an investment function and the EML in the intersection.

Propositions 2 and 3, give exhaustive characteristics of stability conditions
of the EPE with single survivor in the market where agents behave according
to (19.9). The stability conditions are implicit, however, since they contain a
requirement on the roots of polynomial Q(μ). When L = 1 this requirement
can be made explicit. Namely, the following two inequalities are sufficient for
stability:

f ′(y∗ + g)

l′(y∗)
>

−y∗

1 + g + y∗ and
f ′(y∗ + g)

l′(y∗)
<

y∗

y∗ + 2(1 + g)
.

These conditions are illustrated in the right panel of Fig. 19.1 in the coordi-
nates (y∗, f ′/l′). The equilibrium is stable if it belongs to the gray area.

A mixture of analytic and numeric tools helps to reveal the behavior of
the roots of polynomial (19.10) with higher L, and, therefore, to understand
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the impact of the agent’s memory span on the stability of corresponding equi-
librium. In general, the equilibrium stabilizes with lower (in absolute value)
relative slope f ′/l′ at the equilibrium and with higher memory span L.

19.4 Analytic Support of Simulations

All the simulations of the LLS model deal with agents who maximize a power
utility function with relative risk aversion γ, and who use the average of the
last L returns as an estimate for the next period return. Even if the investment
function for such an optimization problem cannot be derived explicitly, one
can investigate how the cross-section of this function by the hyperplane (19.7)
changes with parameters γ and L. In this Section we show that this is sufficient
for explaining the results of the simulations in [6, 7, 8, 9]. We start the analysis
by illustrating the effects of the risk aversion and memory span in the case
of mean-variance investment function (which can be derived explicitly). The
insights developed in this case will then be used to discuss the results of the
original simulations. Throughout this Section it is assumed that g > rf , so
that only EPE are analyzed.

Let us consider an agent who maximizes the following mean-variance util-
ity

U = Et[xt(kt+1 + yt+1) + (1 − xt)rf ] − γ

2
Vt[xt(kt+1 + yt+1)], (19.11)

where Et and Vt denote, respectively, the mean and the variance conditional
on the information available at time t, and γ is the coefficient of risk aversion.
Assuming constant expected variance Vt = σ2, the optimal investment fraction
is x∗

t = Et[kt+1 + yt+1 − rf ]/(γσ2). Consistently with the LLS framework, we
assume that the next period return is estimated as the average of past L
realized return, while the expected variance is constant, and we bound the
investment shares in the interval [0.01, 0.99]. Thus, the investment function
reads

fα,L = min

{
0.99, max

{
0.01,

1

α

( 1

L

∑L

τ=1
(kt−τ + yt−τ ) − rf

)}}
,

where we have defined α = γσ2. From Section 19.3.1 it follows that all the
EPE can be found as the intersections of the EML with the function

f̃α(y) = min

{
0.99, max

{
0.01,

y + g − rf

α

}}
,

which is the cross-section of fα,L by the hyperplane (19.7). The left panel
of Fig. 19.2 illustrates the situation for a single agent. The market has a
unique equilibrium, Aα, whose abscissa, y∗

α, is the equilibrium dividend yield,
and whose ordinate, x∗

α, is the equilibrium agent’s investment share. This
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Fig. 19.2. Market dynamics with a single mean-variance maximizer. Left panel:

The equilibrium on the EML. Right panel: Log-price dynamics over the simulations
for two different values of memory span L. In both cases the investment function is
the one depicted in the left panel.

equilibrium does not depend on the memory span L, but depends on the
(normalized) risk aversion coefficient α. When α increases, the line x = (y +
g − rf )/α rotates counter-clock wise. Therefore, the equilibrium yield is an
increasing function of the risk aversion, while the equilibrium investment share
is a decreasing function of the risk aversion.

What are the determinants of the stability of the equilibrium Aα? First of
all, notice that the stability analysis of Section 19.3.2 can be applied, because
the investment function fα,L is of the type specified in (19.9). The stability,

therefore, is determined both by the relative slope of the function f̃α with
respect to the EML in point Aα and by the memory span L. In particular,
the increase of L brings stability to the system.

The right panel of Fig. 19.2 shows the log-price time series resulting from
two simulations of the model for the investment function f̃α in the case where
the dividend follows a geometric random walk. The only difference between
simulations lies in the memory span L. The dotted line shows dynamics for
the agent with L = 10. The equilibrium is unstable in this case, and the
endogenous fluctuations which we observe are determined by the upper and
lower bounds of f̃α. Moreover, the period of fluctuations is related to L. The
solid line shows the price series obtained with memory increased to L = 20.
The system converges to the stable equilibrium, and the fluctuations are due
to exogenous noise affecting the dividend growth rate. Notice that a different
α value may require a different minimum value of L to produce a stable
equilibrium.

We now turn to the analysis of a market with many agents. In this case we
are particularly interested in assessing the agents’ survival. For this purpose
we use the results of Proposition 2, namely that the survivor should have the
highest investment share at his intersection with the EML. If, being alone,
the survivor generates a stable equilibrium, he also dominates the market,
i.e. asymptotically has all the wealth. The top left panel of Fig. 19.3 shows
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Fig. 19.3. Market dynamics with two mean-variance maximizers. Top left panel:

EML and two investment functions. The agent with lower risk aversion α′ produces
equilibrium A′. Top right panel: Log-price dynamics. Bottom left panel: Dy-
namics of the wealth share of the agent with lower risk aversion α′. Bottom right

panel: The dividend yield dynamics. All simulations are performed for two levels
of memory span of the agent with low risk aversion.

two investment functions for different values of risk aversion, namely α and
α′ < α. Since at y∗

α the agent with risk aversion α invests less then the other
agent, he cannot survive at “his” equilibrium, Aα, and, therefore, he can
never dominate the market. Whether the agent with risk aversion α′ is able
to dominate the market depends on the stability of “his” equilibrium, Aα′ . If
the memory he uses is long enough, the equilibrium is stable and ϕ∗

α′ = 1.
Fig. 19.3 shows the results of simulations for two different values of the

memory parameter L′ for the agent with lower risk aversion α′. When L′ = 20,
this agent, while destroying the previously stable equilibrium Aα does not
bring the system to a new equilibrium. In fact, he destabilizes the price dy-
namics but fails to dominate the market and his wealth share keeps fluctuating
between zero and one. However, when the memory of this agent increases to
L′ = 30, the new equilibrium Aα′ is stabilized and he ultimately dominates
the market. The equilibrium return now converges to g + y∗

α′ < g + y∗
α. Thus,

the agents with a lower risk aversion dominates the market, but produce lower
equilibrium yield by investing a higher wealth share in the risky asset.
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This analysis helps to explain results of the simulations in [7] and [9], and
their findings concerning the interplay between risk aversion and memory. We
have seen that the risk aversion is mostly related to the capability of agents
to invade the market, whereas the memory span influences the stability of the
dynamics. These properties hold as long as the investment function on the
“EML plot” shifts upward with decrease of the risk aversion. It is easy to see
that the investment function, coming from expected utility maximization with
power utility has the same general features as mean-variance function used in
the examples above. In fact, for a given y and a given perceived variance σ2,
the agents with lower risk aversion invest more, which guarantees the upward
shift of the cross-section. As a result, Propositions 3 and 2 can be used. They
provide rigorous analytic support of the simulation results of the LLS model.

In [7] the focus is on the role of the memory. The authors show that with
a small memory span the log-price dynamics is characterized by crashes and
booms. Our analysis shows that this is due to the presence of an unstable
equilibrium and to the upper and lower bounds of the investment shares.
Furthermore, this equilibrium becomes stable if the memory is high enough.
Simulations in [7] confirm this statement; when agents with higher memory
are introduced, booms and crashes disappear and price fluctuations become
erratic. But as we found, these fluctuations are due to the exogenous noise
(coming from the dividend) and not to the endogenous agents’ interactions.

In [9] the focus is on the interplay between the length of the memory
span and risk aversion. The simulations suggest that the risk aversion is more
important than memory in the determination of the dominating agents, pro-
viding that the memory is not too short (see the quote in Section 19.1). Our
analytic results explains why this is the case. Namely, it is because agents with
low risk aversion are able to destabilize the market populated by agents with
high risk aversion. However, this “invasion” leads to an ultimate domination
only if the invading agents have sufficiently long memory. Otherwise, agents
with different risk aversion coefficients will coexist. Notice that this result
is new compared to [9] and related works. Thus, our analytic investigation
is indeed helpful in understanding the interplay between risk aversion and
memory. Another new result concerns the case of agents investing constant
fraction of wealth. In [9] the authors claim that such agents always dominate
the market and add (p. 571):

“Hence, the survival of such strategies in real-life markets remains
a puzzle within the Levy, Levy and Solomon microscopic simulation
framework as it does within the Efficient Market Theory.”

Our analysis allows one to understand and also correct this statement. The
agents with constant investment fraction are characterized by the horizontal
investment functions, for which Proposition 3 guarantees stability indepen-
dently of L. If these agents are able to invade the market successfully, they
will ultimately dominate. However, they cannot invade the market when other
agents invest more in their EPE.



19 Equilibrium Return and Agents’ Survival 281

Finally, notice that for the case g > rf , which we discuss here, Corollary 1
implies that the economy grows with rate g. All our present and all previous
simulations are in accord with this statement. The case g < rf appears in
[6], where the dividend is constant, so that g = 0, while the risk-free rate
is positive. The resulting price grows with rate rf , as we can expect from
Corollary 1.

19.5 Conclusion

We have performed an analytic investigation of the LLS model and used its
results to explain simulations in [6, 7, 8, 9]. We show that the two parameters
governing the profitability of the risky and riskless investment opportunities,
dividend growth rate and risk-free interest, and determine whether the equity
premium can be endogenously generated at equilibrium. The size of equity
premium depends on the agents’ behavior. We have shown how the stability
of the equilibria is related to the memory span that agents use to estimate
future returns and their risk aversion. The results are very general and can
help understand and extend the findings of previous simulations even when
the functional form of the investment function is not known explicitly.
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Explaining the Statistical Features of the
Spanish Stock Market from the Bottom-Up
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InSiSoc Group. University of Valladolid, Spain

Summary. In this paper, we use an agent based artificial stock market to explore
the relations between the heterogeneity of investors behaviour and the aggregated
behaviour of financial markets. In particular, we want to recover the main statistical
features of the Spanish Stock Market, as the high levels of kurtosis, excess volatility,
non normality of prices and returns, unit roots and volatility clustering.

We realise that we cannot catch up most of this features in a market populated
only with fundamental investors, so we need to include more heterogeneity in agents
behaviour. We include psychological investors who change their risk aversion follow-
ing the ideas by Kahneman and Tversky (1979) and technical traders who buy or
sell depending on crosses of moving averages. The main conclusion is that, in this
particular artificial stock market, psychological investors are related to volatility
clustering whereas technical trading has more to do with unit roots.

20.1 Introduction

The aim in our research is to explain the behavior of financial markets, and
the links between this aggregated macro-behavior and the micro-behavior of
investors, filling the gap between the mainstream financial theories and real
markets.

Mainstream finance is grounded on strong hypothesis about the rational-
ity of investors; markets are efficient and investors are able to form rational
expectations about future value of the relevant variables by means of analyz-
ing the available information. A lot of elegant models have been built under
this framework, so we have been able to explain most of the relevant issues in
financial markets.

However, real markets exhibit some “stylized facts”, which are difficult
to explain under this orthodox framework. Among others, excess volatility,
non-normality of returns, excess kurtosis, volatility clusters, unit roots, etc.

As suggested in Pajares et al. (2003, 2005), agent based social simula-
tion can help us to explain why these anomalies take place, as we are able
to get deeper understanding of the relations between the micro-behavior of
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individual investors and the macro-behavior of the market. In particular, by
means of agent based modeling and simulation, we can built models which in-
clude some of the most relevant ideas from behavioral finance (Fama (1998),
Shiller(1981)) or the results of the experiments by Kahneman and Tversky
(1979) about the real behavior of human beings facing risk.

In this paper, we build an agent based stock market and we introduce
different kinds of investors, with different proportions and different trading
rules, and we explore the statistical features of the historical series of prices,
returns, etc. that emerge in our artificial stock market. We compare theses fea-
tures with the statistical properties of IBEX-35, the main index of the Spanish
stock market. We explore the relations between the proportions of investors
exhibiting different behaviors and the statistical features of the aggregated
market.

First, we build a model grounded on the artificial stock market by LeBaron
et al. (1999), (SFASM), as this model has become a reference in agent based
finance. One stock is traded in the market, and it is possible to lend or borrow
at the risk free interest rate. Price emerges as a consequence of the bids and
offers of shares.

In a first stage, the model is populated with agents who behave in a sim-
ilar way than the “fundamental investors”, in the sense that they process
all the available information and form expectations about future prices and
dividends. They decide to buy/sell depending on the disagreement of the ex-
pectations with real prices.

We have validated this model with LeBaron’s, and we have checked that
our model produces series with the same statistical features: levels of standard
deviation, kurtosis, trading volumes, prices; cross-correlation between squared
returns and volume for different lags, etc.

Once we have validated our model, we investigate its financial properties
and see that the output of this market is nearly in agreement with the “ideal
market” suggested by the financial literature.

But then, we have analyzed the features of the Spanish stock index IBEX-
35 and we have noticed some statistical properties which are not in agreement
with the output of this agent based model. In particular, se see that the
distribution of both prices and returns are not normal, exhibiting fat tails
and high kurtosis; there is a unit root in price series; returns are uncorrelated
for different lags; and we can see volatility clusters, so the autocorrelations of
squared returns are significantly positive even for high lags.

We want to fill the gap between these facts in IBEX-35 and the “ideal
market” that emerges from the simple model above. In order to understand
the financial underlying concepts, we have broken down the problem into a
coupe of steps: first, we introduce psychological investors whose risk aversion
changes over time following some of the Kanheman and Tversky ideas; then,
we explore the role of technical trading. The main result of our research is
that psychological investors are more related with market bubbles whereas
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technical trading has more to do with the volatility and stationarity of the
series of prices.

The exploration of the relations between the micro-behaviour and the sta-
tistical properties in financial markets is not new. Morone (2005) shows by
means of an experimental laboratory that, both quantity and quality of in-
formation are related to fat tails in returns distributions and persistence in
volatility. Lux and Marchesi (1999, 2000) explore the role of interactions be-
tween traders and the statistical properties of financial markets. To this aim,
they study markets populated with fundamental and noise traders.

In this paper, we concentrate on the statistical features of the Spanish
Stock Market, and we focus in the role of risk aversion and technical trading.
In our work, fundamentalist traders form expectations about future prices and
dividends by means of a learning device, psychological investors change their
risk aversion over time, and technical dealers use common technical trading
rules (moving averages).

The rest of the paper is organized in the following way. In next section
(two), we explain the main features of the model. We validate this model with
the SFASM. In section three, we present the statistical properties of the IBEX-
35, the main index in the Spanish Stock Market. At this point we realize that
our initial model, populated only with fundamental investors, cannot catch
up some of the statistical features of the Spanish market. We want to fill
the gap, so in section four we introduce in the model different proportion of
psychological investors whereas in section five we explore the role of technical
trading. We finish with the main conclusions of our research.

20.2 The Initial Model with Fundamental Investors

This model has been widely inspired in the SFASM, so we can validate our
results with it. A single risky stock is traded in the market and it is also
possible to borrow or lend money at the risk free interest rate. Risk free
interest rate is constant during the simulation, and there are no transaction
costs when lending or borrowing.

For the purpose of this paper, the amount of dividends paid by the risky
stock follows an order one auto-regressive model, but we can use any kind of
dividend structure. Anyway, dealers do not know, ex-ante, the future dividends
but they can build models in order to forecast the underlying structure, taking
into account all the information available at the trading time. At any period,
each investor has to decide, within some budgetary constraints, the number
of shares he/she wants to buy or sell and the amount of money to lend or
to borrow at the risk free interest rate. Investors send their demands to a
specialist who plays the role of a clearing house. The specialist does not trade
shares at all: he/she just compute the price that clears the market, according
to the bids and asks received. We should emphasize here that price is not
exogenously fixed, but emerges as a consequence of the interaction between
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supply and demand of shares. The number of dealers playing in the market
(N) is fixed during the simulation, although any investor can stay inactive
during long periods of time.

We say that dealers behave as “fundamental investors” because they
process all the relevant information in order to form expectations about fu-
ture prices and dividends and they buy or sell depending of the differences be-
tween these expectations and the real prices in the market. Following LeBaron
(op.cit)., the demand of shares is computed as:

Xi,t = [Ei,t(pt+1 + dt+1) − pt(1 + rf )]/λσ2
i,t,p+d (20.1)

where pt and dt are prices and dividends in period t, E means expectations,
λ is a measure of the risk aversion, and σ2 is the forecasting variance. So
the expectation of futures prices plus dividends next period is compared with
the money the agent will get investing the money at the risk free interest
rate. Then, this difference is adjusted taking into account the variance of
forecasts and the aversion to risk. Agents form expectations by means of
a learning mechanism, which is a classifier system. The antecedents of the
rules are information concerning the market, whereas the consequents are the
parameters the expectations function. The particular issues concerning this
learning mechanism can be seen in Pascual (2006).

In order to validate our model with LeBaron’s, we have simulated both fast
and low learning. In the case of fast learning, agents update their decisions
rules by means of the genetic algorithm of the classifier each 250 periods,
whereas in the slow learning case, agents need 1000 periods to update the
rules. In Table 20.1. we reproduce some statistical numbers for our model
and SFASM. The standard deviation of the returns is over 2, and there is a
lightly excess kurtosis (it should be cero under the normal distribution). But
anyway, the fast learning mode exhibits more excess kurtosis than the slow
mode. Something similar happens with the excess return over the risk free
interest rate and the trading volume.

Table 20.1. Statistical Data in SFASM and Our Model.

Fast Learning Slow Learning

SFASM Ours SFASM Ours
Std. Dev. 2.147 2.095 2.135 2.081
Exc. Kurtosis 0.320 0.229 0.072 0.098
P 0.007 0.012 0.036 0.051
Exc. Return 3.062 2.315 2.891 2.183
Trading Volume 0.706 0.434 0.255 0.209

We have also analyzed the autocorrelations of returns, checking that they
quickly trend to zero (figure 20.2 left). And, as it happened in LeBaron’s
model, we also reproduce with our model the fact that the cross correlations
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of the squared returns with trading volume have peaks between lags –1 and
2. (See figure 20.2 right).

Fig. 20.1. Volume autocorrelations and Correlations of squared returns with vol-
ume.

20.3 The Spanish Ibex-35 and the Gap with the
“Fundamental Model”

Now we compare the output from our model with a real stock market. The
Ibex-35 is the most relevant index in the Spanish market. It is built with the
35 most important companies (in terms trading volume and assets) trading in
the “Mercado Continuo”. We have analyzed their statistical features in order
to check whether they can be reproduced by the “fundamental model”. In
figure 20.3, we show the evolution of Ibex-35, during the period Jun 01-Jun
05.

We have performed the Jarque-Bera tests and we reject the hypothesis of
normality for both prices and returns. Kurtosis of returns is 4.892 (level of 3
for the normal distribution) and the autocorrelations of returns are not sig-
nificant even for small lags. However, autocorrelations of squared returns are
significantly positive even for high lags, which suggest that volatility clusters
could be present (see Cont (2001)). (See figure 20.3). We have also performed
augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests, and we finish
that the series of prices has a unit root. We do not detect unit roots in the
returns.

Does the “fundamental model” reproduce these facts?. In order to an-
swer this question, we have run simulations in a market populated only with
fundamental investors (BFagents).

We have checked that, as it happens for Ibex, the autocorrelations of re-
turns are close to zero even for small lags. Both prices and returns are not
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Fig. 20.2. Ibex Evolution

Fig. 20.3. Autocorrelations of squared returns of Ibex 35.

normally distributed. As an example, in table 20.2, we show the main statisti-
cal numbers of returns for ten simulations, and the average numbers. We see
that the levels of kurtosis are around 3.5, far away from the levels of Ibex 35.
We have performed augmented Dickey-Fuller and Phillips-Perron tests, and
we do not appreciate unit roots.

In figure 20.3, we show the autocorrelations of squared returns for ten
simulations. They are close to zero beyond small lags, so we do not reproduce
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Table 20.2. Statistical numbers of returns.

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 Mean

Mean -0.01 -0.02 0.02 0.01 0.01 0.00 -0.01 -0.00 -0.01 0.01 0.00
St. De. 1.909 1.94 2.04 1.82 1.90 2.09 1.84 1.99 2.04 1.98 1.96
Skew. -0.14 -0.11 0.22 -0.14 0.13 -0.05 0.13 0.03 0.09 -0.19 -0.00
Kurt. 3.34 3.35 3.99 3.33 2.80 3.68 3.84 3.42 3.29 3.27 3.43
J-B 7.85 7.27 48.89 7.83 4.34 19.65 32.21 7.40 4.76 9.27 7.75
Prob. 0.02 0.03 0.00 0.02 0.09 0.00 0.00 0.02 0.09 0.01 0.02

volatility clustering at all; moreover, levels of volatility are low, compared with
real markets.

20.4 Filling the Gap. Psychological Investors

Now, we run a market populated with both fundamental and psychological
investors. The new investors change their risk aversion over time depending
on their previous performance in the market, as suggested by Kanheman and
Tversky (1979). Psychological investors also form expectations about futures
prices and dividends but, their risk aversion changes depending on the evolu-
tion of their wealth, that is, depending on the performance of their previous
deals. In particular, we compare the agent’s present wealth, with the wealth
of the last ten periods.

Tversky and Kahneman (1992) conclude that the importance in risk aver-
sion of a loss is twice the importance of a gain. For this reason, in equation
(1), the risk aversion coefficient (λ) can take two values: 0.5 under normal
circumstances and 1 whenever the dealer experiments the feeling of loss.

In Table 20.3, we can see the average figures for 10 simulations, for different
proportions of fundamental and psychological agents. For instance, 15bf5kt
means that the market is populated with 15 fundamental and 5 psychological
investors (KT from Kahneman and Tversky).

Kurtosis of returns increases as the number of psychological investors is
higher; levels are now closer to the numbers exhibited by Ibex-35. The same
is true for the excess volatility. Series are also not normally distributed (prob-
ability equal to zero). The autocorrelations of squared returns begin to be
significant whenever the proportion of KTagents becomes important (see fig-
ure 20.4), which means that volatility clustering appears in markets with high
proportion of psychological investors. However, we have not detected unit root
in the series of prices, after performing the usual ADF and PP tests.
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Fig. 20.4. Autocorrelations of squared returns for ten simulations.

20.5 Filling the Gap. Technical Trading

Now, we have built a model with both fundamental and technical dealers.
They compute a low order (MA(l)) and a high order moving average (MA(h))
of prices; they buy shares when the MA(l) crosses from down to up to the
MA(h) and sell stocks if MA(l) crosses the other one from top to down (see
figure 20.5). Technical trading rules like this one are very common in both
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Table 20.3. Average figures for 10 simulations

20BF 15BF5KT 10BF10KT 5BF15KT 20KT

P R P R P R P R P R
Mean 81.93 0.00 81.40 0.00 81.35 0.00 79.70 0.00 78.91 0.00
Std. Dev. 7.37 1.96 7.37 1.98 7.52 2.02 8.98 2.26 9.95 2.46
Ex. Var % 81.54 88.53 108.0 169.06 231.95
Skewness -0.28 0.00 -0.14 -0.02 -0.28 0.10 -0.65 -0.04 -0.76 -0.09
Kurtosis 4.17 3.43 3.90 3.63 3.78 4.05 4.03 4.63 4.69 6.37
J-B 69.21 7.75 37.37 16.34 38.61 47.33 115.71 110.2 216.15 475.6
Prob 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fig. 20.5. Autocorrelations of squared returns with 15bf5kt, 10bf10kt and 5bf15kt

financial and commodity markets. Even sometimes, the orders are automat-
ically programmed in an Excel sheet which receives on line data form the
market.

Fig. 20.6. Buying and selling signals in technical trading

In Table 20.4, we show average figures for different proportions of technical
traders (TFagents). When the number of them increases, both excess volatility
and prices increases significantly. Normality of both individual series of prices
and returns is rejected, although the probability computed with mean S and
mean K is different to 0 in some cases. Kurtosis also evolves to the levels
exhibited by Ibex-35, and the higher the proportion of technical traders, the
greater the excess of kurtosis over normal distribution. Although we also have
got evidence of volatility clusters, this evidence is not as strong as it was in
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the previous case and in the real Spanish market, as the number of lags with
significant squared autocorrelations is much lower than in the previous case.

Table 20.4. Average figures for 10 simulations

20BF 15BF5TF 10BF10TF 5BF15TF

P R P R P R P R
Mean 81.93 0.00 99.03 -0.01 105.97 -0.02 107.23 -0.01
Std. Dev. 7.37 1.96 9.36 1.61 18.58 1.46 20.99 1.30
Ex. Var % 81.54 215.86 1207.22 1398.98
Skewness -0.28 0.00 0.25 0.16 0.01 0.13 0.10 0.35
Kurtosis 4.17 3.43 3.86 4.09 2.71 4.04 2.92 5.54
J-B 69.21 7.75 41.11 53.96 3.51 47.57 1.88 289.24
Prob 0.00 0.02 0.00 0.00 0.17 0.00 0.39 0.00

However, we see that technical trading could be related with unit roots. In
Table 20.5, we show the results of the ADF and PP test for ten simulations,
with different proportions of technical dealers. The evidence of unit roots is
even higher whenever the proportion of technical traders increases.

Table 20.5. ADF and PP Tests for different simulations

20bf 15bf5tf 10bf10tf 5bf15tf Critical
Simulation ADF PP ADF PP ADF PP ADF PP Value
0 -4.12 -4.07 -5.13 -4.85 -2.66 -2.19 -2.94 -2.10 1% -3.44
1 -5.37 -5.27 -3.60 -3.21 -4.30 -3.79 -2.53 -1.75 5% -2.86
2 -3.75 -3.54 -4.77 -4.31 -1.42 -1.40 -2.42 -1.84 10% -2.57
3 -4.86 -4.68 -4.36 -4.14 -1.87 -1.67 -2.37 -1.84
4 -5.09 -4.77 -2.97 -2.69 -2.08 -1.89 -2.10 -1.22
5 -4.97 -4.46 -4.26 -3.94 -3.49 -2.92 -2.19 -1.25
6 -4.36 -4.25 -4.34 -3.80 -3.00 -2.47 -3.04 -2.61
7 -4.16 -3.87 -4.48 -3.83 -1.79 -1.48 -2.72 -2.07
8 -4.58 -4.18 -3.94 -3.82 -2.21 -2.02 -2.74 -1.81
9 -4.78 -4.16 -4.24 -4.07 -2.43 -2.01 -2.73 -1.72

20.6 Conclusions

We have built an artificial stock market which reproduces the main statistical
features of the Ibex-35, the main Spanish Stock Market index. In order to
achieve this purpose, we have run different markets with different proportions
of fundamental, psychological and technical investors. The first important
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conclusion is that all kinds of investors are necessary if we want to reproduce
the index, as the presence of fundamental dealers alone do not explain some
statistical properties.

Non normality of prices and returns and excess kurtosis and high volatility
is reasonably well explained by means of technical and psychological investors.
We have learnt from simulations that psychological trading help us to under-
stand the emergence of volatility clustering, whereas technical trading has
more to do with higher levels of kurtosis and the existence of unit roots in
returns.

Of course, the model could be improved, in order to include more investor
behaviors, more stocks, etc., but the purpose of this initial work was to explore
the relations between heterogeneity in the market and its statistical proper-
ties, so that we could reproduce the statistical features of the Spanish Stock
Market. Our work wants to be an example of “Generative Science”, in the
sense by Epstein and Axtell, (1996, 1997); Axelrod (1997).
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294 José A. Pascual et al.

[8] Lux, T. and Marchesi, M. (1999). “Scaling and criticality in a stochastic
multi-agent model of a financial market”. Nature, 397:498—500.

[9] Lux, T. and Marchesi, M. (2000). “Volatility Clustering in financial mar-
kets: a micro-simulation of interacting agents”. International Journal of
Applied Finance, 3, pp: 675-702.

[10] Morone, A. 2005. ”Financial Market in the Laboratory, an Experimental
Analysis of some Stylized Facts,” Discussion Papers on Strategic Interac-
tion 2005-27, Max Planck Institute of Economics, Strategic Interaction
Group

[11] Pajares J., Pascual J.A., Hernández C. and López-Paredes A. (2003) A
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